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PREFACE

The conference "Numerical Methods and Approxzimation Theory' was held
at the Faculty of Electronic Engineering, University of Ni&, September

26-28, 1984, It was attended by 46 mathematicians from several universities.

These proceedings contain most of the papers presented?during the con-
ference in the form in which they were submitted by the authors. Typing,
gramatical and other errors were not, except in some isolated cases, edited

out of the received material.

The topic treated cover different problems on numerical analysis and

approximation theory.

September 1984 G.V. Milovanovid
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GAUSSIAN ELIMINATION FOR DIAGONALLY DOMINANT MATRICES
Zvonimir Bohte, Marko Petkov3ek

\BSTRACT:

/tlkingon [1] proved that the property of columnwise diagonal
lominancy ie preserved during the Gaussian elimination. This

‘s true only for exact arithmetie. In this paper a correspon-
ling theorem for floating point arithmetic is proved.

tAUSOVA ELIMINACIJA ZA DIJAGONALNO DOMINANTNE MATRICE.
1ilkinson [1] Jje dokazao da se osobina dijagonalne dominant-
losti po kolonama u toku Gausove eliminactje ne narufava. To -
‘e tadno samo za egzakitnu aritmetiku. U ovom radu Je dokaza-
sa odgovarajuda teorema za aritmetiku u pomidnom zarezu.

1. INTRODUCTION

Let A be a real square matrix of order n. The Gaussian

elimination for the solution of the system of linear equations
Ax = b
yields a set of equivalent systems

A(r)x = b(r) s, P = 1,.s0.,n

where A(l) = A, b(i) = b and A(n) is an upper triangular ma-
tyrix. The matrix A(P) has the following block structure

U X
(1) A(I‘) - r r

19 AP

where Ur is an upper triangular matrix of order r-1 and Ar

a square matrix of order n-r+l.

Wilkinson [1] proved: If the original matrix A is
columnwise diagonally dominant, i.e. if

n

~21]aik] s, k = 1,04.5,n
i=
i#k -

Iakk‘ >



then the matrix Ar is also columnwise diagonally dominant, i.e.

3 (r‘) 2 | (I‘}v
fairl > T lasp’l s ko= ryeeean
KK sEL Tk
1tk
for alk} r = 2,...,m~1. He also proved that
(r)
max fajp 'l < 2.max]ag |-
1,k,r i,k

) Unfortunately, the presence of rounding errors may de-
stroy the original diagonal dominancy. Therefore, to ensure
the nonfailure of the method it is necessary to require more

than just a mere diagonal dominancy.

In the analysis of rounding errors we shall use the

equation
(2) fl(xey) = (xoy)(1 + e) , le|l g u

where x and y are any standard floating point numbers and
fl(xey) denotes the eomputed result of any of the four arith-
metic operations. We shall suppose that the relative error of
an arithmetic operation is bounded by unit rounding error
which is normally

u = blhtf2 (for rounding)

piE (for chopping)

1

where t is the length of the mantissa in the base b (usually
2 or 10). It is of course assumed also that during the computa-
tion no overflow or underflow occurs.

In the following we shall leave out all work with the
right-hand sides.

2. THE ALGORITHM AND ERROR ANALYSIS
e denote the current calculated matrix at the r-th step

by B(r). It has the same block structure as the matrix (1)

B(r) - r r



t is assumed that the matrix A ='B(T; isAthé matrix stored

n the computer.

The algorithm for the caleulatlen of the upper—trzan=

(nYy

gular matrix B is as follows:

T = tieoeyn=1:

i = rel,.. . nt

(3y my = £1bi0 <Y
' K s r4l,0.0,n

, pr+1) (r) - pirl
(w) 1k = fl(b fl(mlr rk 7)

Let us denote
(5> h, = max}| ii)} y i,k 5 Pyi..,n
and
(6} h = maxhrr, r = ky..05n

Using (2} in. (3) and (4) we have

Mo = qir(l + Xir) s 1 = rel,...,n
and
7 pEM) o (P - by @ e 2T
' i,k = r+},..n,n

where ]
(8) a3, = bl /piE)
and
(9) fxipti i (I‘)I, lZ(I‘)[

Let us suppose that
(10) la;nl <1

We can write equation (7) in the form

(r+1) _ (r) _ (r) (r) . .
(11) bik = bik qlr k¥ dik , 1.k = r+l,...sn
where
(ri . (r) (r) (r) (r)
dix” = "UpPri Kqp ¥ Vi XgpYig 2 Y zgc) ¢t
+(b€r) - qirbéi))zii)

Then we can obtain the bound for dlk using (5), (9) and (1@)

(12) [d&i)[ < hf(2u+u Y(l+u) + 2uh = (4 + 3u + u,z)uhr

Now, we can formulate the theorem.



3. THE THEOREM

Let A be a columnwise diagonally dominant matrix of

order n and furthermore, let

(13)

n
‘akki > i§1|aik| + cun(n—1?|akk] s kK = 1,...,0

itk
where ¢ = 4 4+ 3u + u2, and u is the unit rounding error.
Then the following is true for r = 1,...,n:
(i) the matrix B, is columnwise diagonally dominant and

furthermore,

lb(r)

n

> ) (b(r)] + cu(n r+)(n-r)la, | » k = r,...5n
1=
ifk

(ii) .2 b7}

!]A

n
‘Zi|aik| + euC2n-p)(r-Da, | » Xk = ryeueyn
i=

(i11) T < (2 - culnr+D(nr))|ay, | 5 isk = The..nn
PROOF. We shall prove the theorem by the mathematical induc-
tion with respect to r. Let r = 1. Then, since B(l) =By = A,

proposition (i) coincides with (13). Obviously, (13) implies
that cun{n-1) < 1. Therefore, (ii) and (iii) hold trivially
for r = 1.

Let propositions (i) - (iii) hold for some r, 1 Lr <
< n-1, and let r+l1 < k < n. From (11) and (8) we obtain

n n
(r+1) (r) (r) (r)
(14) b. < |b / b +
,i=g+1l k = l ! I/ li=;+1| ir !
i#k itk
n n
(r) (r)
+ +
1=§\+1l ik i:gﬂl |
ik ik

From (i) and (8) it follows that the inequality (10) holds.
Therefore, we can use the bound (12) in (iu). From (i) it
follows
b B < iR - pE)

kr

i=r+l
ik



rom (14%) we have

n
1
R URE A IR A T S R P VTN Ce
i=p+
itk n
L) Ib(r)] + cuh (n-r-1) =
i=pr+l
14k
)
lir!b(r | - qurllbéi)‘ + cuh (n-r-1)

Finally, from (i), (iii), (11) and (12) it follows

n
i-i Iby P+1)} < ]béi){ = culn-r+1)(n-r)|ay, |
itk (P)I

'qkr||b + 2culn-r-1)|a, | <

(r+1) _ (r)

< |bex dg | = euln=r)(n-r-1) + Dla, | <
< Ib(r+1)l + 2culay, | - culln-v)(n-r-1) + D|a, | <
< Ib(r+1)| - cu(n—r)(nﬂr—l)lakk|

which proves (i).

To prove (ii), note that

n

(15) v olas] <1
izp+l ir

because Br is columnwise strictly diagonally dominant. There-
fore, (11), (12), (15) and (iii) imply that

n 1 n n n
NDITEL sl PR S L A B D1 ) I YOR R S A i
i=p+l izp+l zp+l ilz=p+l

< lzr]b(r)| + ?cu(n—r)lakk|

Then, using (ii) it follows

n n
(r+1 ,
(16) i=;+1lb L )l < .Z laj, | + culZn-r)(r-1)|ay, | +
+ 2culn-r) [ay, |
n |
= izllqikl + cu(2n-r~1)r|ay, |

and we have obtained the same inequality (ii) in which r is

replaced by r+l.



If we proceed and -use the inequaiity {13) in (16) we get

B (pel)y
Lot

[

) 2la,d - cunin-1)]ay, ] + éu{2n-r~1)r1akk1 =
izpr+l

2}a

! ~cutn-ri{n-r-1)]a,, |

Therefore, for each pair 1,k = r#l,...,n

Jbﬁi*ia] ; f?'-:cu(n—r)(n-r—i)ﬁ{akk]

which proves (iii).

4. CONCLUSIONS

The assumptions of the Theorem are sufficient to ensure
‘that the Gaussian elimination in floating point cannot break
down. All the quotients m, . are bounded in modulus by 1 and the
pivotal growth of the computed elements is bounded by 2. There-
fore, in view of Wilkinson'’s error analysis {1] the Gaussian
elimination for matrices which satisfy (13) is numerically

stable.

The Theorem also enables us to determine the minimal
length of the mantissa which ensures that the breakdown of
the Gaussian elimination cannot occur. Let the matrix A be
such that

n
jakk{ > d i§1iaikl s k= 1,0004n
ifk
The following table shows the minimal length of the mantissa
in dependance on d and n with rounding in base 10.

minimal length of the mantissa

Ta | n=s n =10 n = 100
1°001 6 7 g
1°01 5 3 8 :
11 Y 5 7 "
1°5 4 Y 6
2 3 Y 6

REFERENCES:
1. WILKINSON J.H.: Error analysis of direet methods of matrix
inversion. J. ACM 8 (1961), 281 - 330.
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W SCIE NUMERICAL PROPERTINS OF INFIFIPE-DIMENSICORAL STHPIEX
Milod M. Laban
BATRACT s '

‘barting from an analybic model of infinite-dimensional sim-
lex in Benech space,bthe possihility of it s mood approxima-
iion by one of it s finite-dimensional subsimplexes is obse-
wved,The class of simplexes,where such a apnroximation is
iossible to eighbter make or not are established by a sequen-
€ of theorems.Herefrom,the members of the class of limited
nfinite-dimensional simplexes with vertices makine the ort-
ogonal systen,could not be apnroximated on such a way.

P EBKTF BUFARICKTE OSORIFALA BRSKOR WL0=DI1 1A T0H C6 8T PIEK-
f,Polazeéi od analitidkor modela beskonaéno-dimenzionog si-
mpleksa u Banshovon prostoru,ispitujie se mosulnost njepove
dobre aproksimacije Jjednim njezovin konadno-dimenzionim pod-
simpleksom.Kizom teorema utvrduju se klase simmleksa kod ko-
Jih je takve aproksimacijs moguca i one kod kojih nije mogu-
ca,Tako se dobija da oni iz klase ocranidenih heskonadno=di-
mengionih simpleksa ¢ija temena cine ortoponalan sistem,ne
mogu biti aproksimirani na pomenuti nadin,

1o HABIC TINaAS

A finite-dimensionsal simnlex in mathernatics end appli-
cations is widely threated notion,'There exists a great numb-
er of articles on analytic-roometrical nroperties of a n-di-
mensional simplex and,consenuentlyynumerical apnplicaiions.
""he notion of infinite~dimensional sinnlex ig introduced by
Bastiani in [l],and is developed in topoloTical sense by
laserick in [4]),Fhelps in {5],Lau in ?5jand 6llein in [2]»
Tor a difference of such a direction,we shsll deal with the
analytic-eseometrical approach to this notion,keeping on mind
that infinits-dimensional simnlex would be natural penerali-
nation of a finite-dimensional case as much as possible.Ab
the same time,we shall insist on . .the results which ave suit-
able for the numerical practice.

7



At first,we shall show that it is possible to make su-
ch a construction in at least infinite-dimensional Banach
space.

Theorem 1: Let X be Banach space and let KoeXyseeosX goeoe
be such a vectors in X +that {x 17 Xgreee X =K yooe is the
infinite unconditional set of linearly independent vectors.
Let us denote

+® i +® +@®
Eg;gnxn Eggg =1 § 0,,97,05,000 20 :g_ X, converges

k .
{nzoglkx nZ= l =] gio, o a8 ,Oik> 0 ,-(lo’ oo ,1k}C
C{o,l,z,..“.}}
Then S = T ,where A denotes the closure of set A.

Proof: 1° et y be an arbitrary vector from S.Then there
exists sequence (y ) (§=1 2,o@.) of vectors from S such that

(1) lin y, =y ( 75 2{ dgnxn ; j{: @ =1 JO 0)
Jsem
states.Let us denote -1
yi= > J@ x_ +(1- Z Jo )x. (§=2,3,
J =5 o aso J

yeoo)

It is easy to verify that
(2) yéET (j=293,omo) @

Further on,we have

(3) oy =l-2 3o )x, ZJOHXHH<(1 ZJ@ sl +
=0

n.—

n
o . n=j+1 *
Since :E:JGH =1 ,it follows
n=o .
J =
(4) lim (1- > 906) )
o . J=+m n=o
and by > Y0 x =y. we obtain
= nnYd
1o
(5) 1n || > Jo x | - .

Jekm  n=j+l

If we,now,let Jj = +® in (3),then accordincly to (4) and (5)
we have



lim |yi=y.ll = O >
j+m Jd 7d

sherefrom and (1) it follows
lim y3 =3y .
Jot@
Jerefrom,with the regard to (2),we obtain y€T .Consequent—
ly S¢® .,
2° et 2z be an arbitrary vector from T .Then there
exists sequence (zj)(j=1,2,.o.) of vectors from T such

that Ie k.
. o . Iy %03
lim 7y = z ( 25= 2 M %n 5 2 M=l v Ugseee sy 205
J+® n=0 n=0 3

;'{jxo,...,Jxk_}C{xo,xl,e..} )
states.Let us denote J

zZy = cex
£=o 7n n ?

where j@ ¥ = jx

. i * "n i

A

n . .
0 ,3%${%%,N.ﬂxk} .
J

It is obvious that ziE&S (j=142,000)s8ince zi=z, ,it foll-
ows lim z}=z ,hence 2&5 .Consequently T¢S and the proof
jo+® ‘
is completed.
This theorem allows us to use the following notion of
ja infinite=dimensional simplex:
/Definition 1: Set § we shall call the infinite-dimensional
simplex (IDS in the further. text) with vertices xo,xl,xg,,,;

and denote S(xo,xl,xg,...),ﬂt the same time set

X def : .
p(x ’xj2,000,’xjk’ 011) ‘——e_ Xa'l + I‘(ng"'le,Qoov,xjk—le,asv'_f

(L denotes lineal) we shall call the face of S(X_yXjsXpseee)y

3

if {X: 3% joeeyXs ,...} is the finite (or infinite) set of
dy’ o Jdy )

different vectors which is subset of {XO’Xl’XZ"°'} .

The following theorem(obviously true) points out that
such a notion of IDS keeps a number of very important and
for application ruther useful properties of it's finite-dim-
ensional generator,



Theorem 2: Let {xj o X ,,..,x<,9e.@} be @ finite (or infin-
1 : :

32 dx
ite) set of different vectors which ig subset of {xb,xl,.m.}.

‘Then:
0 R R
1 S(le’xa‘z, 50 0'7’ xg'kﬂro .*l') g Sixog‘)tl’ )Cé, @ .‘d’v) ’

’2°,S(le,x32,44m,x

v

3 eoe)'—c p(x. X 600 X o'g)
ak9 31, 323 3 : 1{’
20" = K. < ©-0 o > ° oo o
3 p(X31’X32’°"’x3k’°"j p(xaz,xal, ’xﬂk’ )3
8 0 o- * e oo = » L Y
s ,xak, ‘) Xal* Aixjé

4% plx, ,x X yoecos
9’ Jx

o

2. APPROXIMATICN

Let S(xo$x ) be an IDS.Naturally,the possibility

Qoo
of replacing such a simplex with a finite-dimensional one
{FDS in the further text) is of the great importance.

At first,if suplx ll= +® ,then S(x_,%y,0..) is unlimi-
ted set.and,consequently,it is not possible to replace it
with an FDS which is necessary & limited sebt,.If sup“xdk:wm,
then we have the following results:

Theorem 3: Let {X 4Xq,...) be a orthogonal set and inflix ll=

=A>0 ,Then for each vector y from an arbitrary finite~

dimensional subsimplex there exists a set Y(y) such that

the following conditions are fulfilled: ‘
1° 1y) < S(x 9Xqgees) §

2° ¥(y) is itself an IDS
3% (I (xe¥(y))Ux-yl25 ) .
Proof: Without loosing the generality in proof,we can obser-
ve FDS  S(X,sXyyeees¥y) 8nd such ¥eS(X 3%y ee0y%,) that
5 ="£§%Ynxn ( é%%vn:l 3 $520 (n=0,1,000,k))
where Y=, = max{?nln=0,l,.o.,k} .
Cage 1:Y?%-.Then Y(y)=8(x

k+1’xk+2"°') ¢
Really,Tet xeS(xp, 15X, 5se0se) oSince



11
12 = x4 g2 25 x 12> 142 '
x-y ;Y 2 Ayl ‘Pkﬂ kH .
; follows 3°, |
Case ..?:‘f<% »Then Y{y) 38“1_?)3{“1#3@2,(1-=\"')xk+1+

E_l_
Sy

Yxk+5 90 e 09 .Ilet us del‘lote +m .
| O ) |
@ . '
here :%;,ifﬁ =1, P 20 (nsk+1,k+2,e..).Since
n=k+
+® 4D
x=( S -y g+ S 0 x o =(1-Dxy Z 2Px
n=k+1 n=k+1 n=k+l >

+ follows JcéS(xo,xl,...) ,becouse
(1-f)r 2 ¥Pa1-¥a¥a1 .
n=k+1
m the base of definition 1 we can now conclude that the co~
dition 29 is fulfilled.Further on,wWe have

I =g = 012+ UyhZ 2 %02 > (1=1) 125 &

? 2
"Xk+l 2 g
1€ “X‘»yﬂ:>%- .Let now x be an arbitrary vector fronm
Y(y). Accordinp to definition 1l,there exists sequence
Zi ?(M(U.Wx e HPX 1N312,”.)mmhtmmzkhmxa
J n=k+l n Jor®
Since 1|Xj=yﬂifg (3=1,2,00.),5here exists such a natural
number §_ that
° P =3l =l ax”b%

Jo 3o

gtates,hence %% is satisfied and the proof is completed.
Remark 1: The last theorem in the other words means that the
good approximation of an IDS by one of it's FDS is not poss-
ible in that case,in spite of the fact that such a IDS is
Iimited set.Therefore,it makes a sence to develope the theo-
Ty on such a simplex,which is done in {6] already. .
The next theorem shows that somewhere on IDS the desi-
rable approximation is possible in local view.
Theorem 4: Let suplix | M<+a> and 1et €>0 be a arbitrary real
number.Let ,further, Y‘ZE x, (:Z.@ -1 Oh20 (n=0,1,0s.))

n=0
be such a vector that ‘ &
Z 7 1 - Tsupx

states.Then for each x.&8(X ,Xqye00)0 K(y,%) ,5here exists
v'es(x ’Xl"°"xk) such that lx-y'l<€¢ is valid,where



K(y,%) yas usual,denotes {x| Ix-yl< %} ‘k—l e
Proof: We shall demonstrate that y'=(1-> 0 )x+> € x
n=o n=0

satisfies the proposition.Really, , o
N sy € -
Ix=y N hx=gl+ly-yiI<F + (- 6 Mixll+= > e lixli<
2 QZ% R Sk 2R

<5 E—Eigfki supll 1= 3 0 )< & + & weuphnl gy
7+ supl=, i + suplix,| e n' 2 + [ PRUPRX supuxhnEE
and the proof is completed. ‘

The sufficient conditions when the absolubte error made
in replacing the IDS by it‘s FDS is lower then given £>0,
followed in the next two theorems:

Theorem 5: If Hxhﬂ<§-(n>k) sthen for each yeS(x ,Xyseee)

there exists y%S(xo,xl,..@,xk) such that Ny-y <€ .

. +® +® .
Proof: Let y= lim y. where _ Jdo < Jn _
3 o3 9 yj_géo ann s éio @n-l and

0,2 0 (n=0,1,00.) olet us,further,denote

k=1 k=1
yi=2> rOnxn +(1=->" rgn)xk ,where Hyhyrw<% +Now we have
n=0 n=0

k +®
™ A g_ (T T r
ly=y i ly=y I+ ly,=y i< § +(1 é;; on)uxkn+£§£;l o llx Il <
<& (1 Zk To )& w(1 zk To )& <€ ,which proves the theor
3 _n_o - ?.+ Dn=0‘ n'% yWhich prove e orem,

As a direct consequence of this theorem we obtain

Theorem 6: If Iim x _=a (a is vector) ,then for each €>0 ,
n>+®
there exists sn FDS which is ¢-approximation of IDS

S(x -8, Xy-8y0ee) o
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SOME SUFFICIENT CONDITIONS FOR
CONVERGENCE OF AOR-METHOD

Ljiljana Cvetkovid, Dragoslav Herceg

ABSTRACT
'le consider AOR [ Accelerated Overrelaxzation method
for a system of n linear equations with n unknowns Az =b,

where the matrix A has nonvanishing diagonal elements. If A
18 strictly diagonally dominant we improve the convergence
intervals, given in [5|, for ¢ and w. We also consider the
convergence intervals for some matrices, which are not stri-
ctly diagonally dominant.

NEKI DOVOLJNI USLOVI ZA KONVERGENCIJU AOR-POSTUPKA. Posma-
tvamo AOR (dccelerated Overrelaxation) postupak 2a redavanje
ststema n linearnih jednadina sa n nepoznatih Ax =b, gde ma-
trica 4 ima nenula dijagonalne elemente. Ako je A strogo di-
Jagonalno dominantna, poboljdavame intervale konvergencigje,
date u |[5|, za o ¢ w. Takodje, posmatramo intervale konver-
gencije za neke matrice, koje nisu strogo dijagonalno domi-
nantne. -

1., INTRODUCTION

We consider a system of n linear equations with n

unknowns, written in the matrix form
Ax = b,

where the matrix A =[ai | has nonvanishing diagonal elements,

j.
and AOR (Accelerated overrelaxation) method for the numeri-
cal solution of this linear system. This iterative method
was presented by Hadjidimos in |[1], 1978. By splitting A
into the sum D-S-T, where D =diag(a11,a22,..,,ann) and S

13



and T are the strictly lower and upper triangular parts of
A multiplied by -1, the corresponding AOR scheme has the fo-
Ilowing foxmr: o ' :

(1) (E-oLyxF* = ( (1-0) B+ (0-0) L +wt)x® +wc, k=0,1,...,

where L =Dﬂrsl v=p"tr, ¢ =Dflb, E is the unit matrix of or-
der n, ¢ is the acceleration parameter, p #0 is the overre-
laxation parameter and x® ec™ is arbitrary. The iterative
matrix of schéne (1) is givgn by

My, = (E-oi) ((l—miE*ﬂ(wfa)‘L-EwU) )

We get bounds for the spectral radius p(MG w) of the matrix
, ,
M in form p (M } <G and then from G <1 we get sufficient
O O —

conditions for the convergence of EOR method.

For A =laij[ eCn’n (= set of complex nxn matrices) we
define for i=1,2,...,n
n n
P.(ay = § la,.f, 9.y = ] la, .},
i 321 ij i j=1 ji
j#i j#i
€i=Pi(L), fi=Pi(U)' ei =Qi(L)z - fi:.Qi(U) 4
ea,i =ae; +(l-u)ei, fa,i =afi +€l—a)fi .
2. CONVERGENCE OF THE AOR METHOD
- n,n \ :
Theorem 1.  Let A.=[aij] ec™’'”, a;; #0, i1,2,...,n

and o € [0,1]., Then for w,0 € R, w#0, |ole . <I, i=1,2,...

o,i
seephy, p(MO w) satisfies the following :
1

|1-0]-[u-cle, ;-luls

. a,i
min -~ < p(M <
1<i<n 1+{ole < ol o,w) -
1= o,i
) ]l—w!+lw—0}eu,i+[w[fa,i
= max 1-TaTe .
1<i<n o, i



Proof. We prove the upper bound for p(M, ). Let A
e any eigenvalue of MQ © and suppose that '
o &
- R .
[1-wf+|o-ale, o]t

Al > =

, i=1,2,...,n .
L—[Ec,fea‘f
After seme manipulations we have
PA+w-1] >lw+0(k~1)[ea i+fwff i=1,2,...,n
r

o, i’ ’

[bii]' >0cPi(B)+€l—0L)Qi(B), i=1,2,...,n,

where B = [bij,} GCn'n, B = (A+w-1}E = (w+0 (A-1))L -wU., Then

theorem 2.5.2 from [2] shows that detB#0. .Since (E-dL)-

. (}\E--M0 m) =B and det(E-oL} =1 it follows det(AE-M ) #0.
r o,
This contradicts the singularity of AE —Mcy ®
r
The lower bound for p(MG u)) one proves similarly.
?
n,n .
Theorem 2. Let &= [aij] eCc a;; #0, i=1,2,...
.,N. Then for w,0 e, W#O, }G[(ei+ej) <2, i#5, i,3
=1,2,...,n, pM  J satisfies the following:
L

2{l-w|-jw~0o|fe,fe )= |w| (£, +£,
L R L G

- < p(M ) <
i#] 2+[0I(ei+ej) - grwr =
2| 1-wi+fw~-c|(e,+e )+ w|{£,+£,)
P L i o N N
i#j , 2-}0[(ei+ejy

Proof. We prove only upper bound for p(MO w) . The
3
lower bound we obtain similarly. Suppose that Mo © has an
1
eigenvalue A with

2[1-6|+|w-c| (e,i+ej)+[<u[ (fi+£j)

l}\|> s L#3

2—[0}(ei+ej7)
i,y=1,2,...,n .

From this inequality follows that



e, te, fi+f. ‘
l)\+w—ll > |w+o()\-—l) l ——3-'7-—3— + {w| —"-2""1 p #3137 2, 0000
| A+w-1 | >§ (By (B)+R,(B)), 173, 1,3=1,2,....n,

where B is defined as in the proof of theorem 1. Since bii =

=A+w-1, i=1,2,...,n and

. . .
Leye) +p ) 2V 2 BB

we have now . »
by 11byyl >2y (BIPS(B),  i#3, 1,371,2,...,n.

But then, theorem 2.4.1 from [2] shows that detB #0. This
contradicts the singularity of AE _Molw'

Theorem 1 contains as a special case (0=1) theorem 1
Qf[3}, where the matrix A must be strictly diagonally domi-
nant, In our case it is sufficient that A has nonvanishing
diagonal elements.

Under assumptions of theorem 1 of [3] our theorem 2
holds, but the converse is not true.

Theorem 3. Let A==[aij] eCn’n, ajy #0, i=1,2,...
we.,n and o e [o0,1].
Then the AOR method converges for
(a)  max(e . +f i) <1, 0 <y <min I1€—~—%?——- .
i Gk O i a,i “o,i
=y(l=e ,=f _[)Y+2max(0,p-1) w(l+te ,~-f VY42min(0,l~
max Otllz le ’ 5< min o, i (;,l) ( [ w)
i o, i i o, i
or
. 4 .
(b) Ta& (ei+ej+fi+fj) <2, 0<uw <2+e;+e.+f.+f. ,
i#3 i3 13
~w(2-e,=e ~f —f.)+4dmax (0, w-1) w(2+e,+e,~f , ~£f Y+4min(0,1~u
max S—- l+e37 <g<min L3 2 ] '
i3 2(e5™ey i 2(e;tey)

Proof. We consider (a) and theorem 1. Similarly one
can show the convergence of AOR method in case (b) using the-
orem 2.



y shall prove that for all i=1,2,...,n holds

2
e . +f <1, 0<0< —————vce—
+
a,1 o,1 1+e0‘,,i fOL’i
12) . i
-0 (1= -f )+ - 1 ~f  )+2in(0,1-w)
w(l i fq,l) 2max (0,0 1)<O‘ (:w( ey 4 u,l) Min(0,1-w) |
e 2e . [
0,1 o, 1 }
|l—w[+lw—0]ea i+lmffu i
3) L -t < 1.
i1-loje .
o, i

ince for ¢ and  from (a) we have Jo]eu , <1, theorem 1

fi
nd (3) show that p(MO w) <1l.

r

o0 prove implication (2) ==> (3) we consider the rext cases.
~w(l-e ,~f )
ase I: 0 <p <1, %'l 9er <5 <0,
— eali —

hen 1-wptwe ; moe, jtef <1 toe, 4 which is equivalent

o, o, i ,i -
to (3).
Case II: 0 <w<l, 0<0g<w .
Then l1-w+twe .=-oce ,+wf <l -oe , since e ,+f . <1
a,i o, i o, o a,i Ta,i
w(l+ea iTw 1)
Cagse IITI: 0 <w<1l, w<o < ée L. .

Then l-w+oce ,-we ,+wf ., <l-ce . .
o,i a,i o,i o,i

Case IV: 1< < - ; - <g <0,
se .1V w FE Ze .
o,i "o,i a,i

Then w-1 +we ,-ge  +wf <l+ge ., .
a,i o,i a,i o, i

r r

2
Case V: I<w < % FF T ¢ 0 <o <uw,

o,i "o,i

Then w-l+we ,-ce ,+wf , <1 -ge_ ., .
w w i o i o,1

o, 1 o, '
~wtwe ~wf +2
Case VI: 1 <w <————~3—-~— < — L o.1
: 1+e  .+f . ' W <0< 2e
o, o,i 0,1

Then w-l+oe .-we ,+wf , <l=-ce , .
o,i a,i o 0,1

I



Remark. If im case (a) of theorem 3 we'assume a=1,
then for strictly diagonally dominant matrices AOR method

converges if

. 2
0 <w <min ~———.,
i l+e.+f,
i 7i

—m(l~ei—fi)+2max(0,w—l) m(l+ei~fi)+2min(0,l—w)

max < ¢ <min
i 2e, i 2e,
i i
This convergence intervals - for w and ¢ are larger than the
corresponding intervals from theorem 3 of LSJ.
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SoME MODIFIED SQUARE ROOT ITERATIONS FOR THE SIMULTANEOUS
DETERMINATION OF MULTIPLE COMPLEX ZEROS OF A POLYNOMIAL

Miodrag S. Petkovi¢, Lidija V., Stefanovié
ABSTRACT:

Applying Newton s and Halley ‘s correction, some modifications of squ-
1re root method, suitable for simultaneous finding multiple complex
geros of a polynomial with the known order of multiplicity, are obta—
ined in the paper., The convergence order of the proposed (total-step)
nethods ts five and six respectively. Further improvements of these me=
thods are performed by approximating to all zeros in a serial fashion
using new approximations itmnmediately they become available (the so -
zalled Gauss-Seidel approach). Faster convergence is attained without
idditional caleulations. The lower bounds of the R-order of convergen-—
2e for the serial (single-step) methods are given., The considered ite-
rative processes are tllustrated numericaly in the example of an alge-
braie equation.

NEKE MODIFIKOVANE KVADRATNO KORENSKE ITERACIJE ZA SIMULTANO
ODREDJIVANJE VISESTRUKIH KOMPLEKSNIH NULA POLINOMA. Prime-
njujudi Newtonovu © Halleyevu korekciju u radu su dobijene neke mo-
difikacije metoda kvadratnog korena, pogodne za simultano nalaSenje vi-
Sestrukih kompleksnih nula polinoma poznatog reda videstrukosti. Red
konvergencije predlofenih (total-step) metoda fe pet i dest rvespekti-
vno. Dalja pobolddanja ovih metoda su postignuta aproksimirajudi sve
nule u serijskom postupku kori&denjem novih aproksimacija odmah kada
postanu dostupne (tav. Gauss=-Seidelov pristup). Bria konvergencija je
dobijena bez dodatnih <zradunavanja. Za serijske (single-step) metode
date su donje granice R-reda konvergencije. Razmatrani iterativni pro-
cest iLlustrovani su numeridki na primeru algebarske jednadine.

1. INTRODUCTION

The iterative methods for the simultaneous determina-
tion of multiple zeros of a polynomial have been developed du-
ring the last decade as extensions of the known methods for
simple zeros. M.R. Farmer.and G. Loizou [4] have derived a
class of iterative methods with arbitrary order of convergen-
ce. The basie imperfection of methods from this class with
high convergence order (greater than three} is a demand for

great number of numerical operations, which decrease their

effectiveness., Several modifications of the basic Maehly’s
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mathod [10] s, which enable very fast convergence by reasonab-
ly small numerical operations, have been proposed in [12] . In
recent years a lot of attention has been given to the study of
this topics in interval arithmetics (see [6], [7], [15], [16]).

In this paper we give some modifications of square root
method (also known as Ostrowski’s method [124.] ). which provi-
de: (i) simultaneous determination of multiple polynomial zeros
whose the multiplicities are known; (ii) acceleration of conver-
gence with small number of additional calculations in relation to

the basic method.

2. SOME MODIFICATIONS OF vSQUARE ROOT ITERATIONS

Consider a monic polynomial P of degree n2> 3

B(z) = 2%+a 2" 4.i.tazra = lf(z_r)mj (a, e C)
=1 ' 1 0 4 j i

with real or complex zeros Pisoesesly having the order of mul=
‘tiplicity Myyeoeymy recpectively, where my +toeoe + my =n, Let
ZiseeoyZy be distinct reasonably good approximations to these
zeros and ﬁ‘i be the next approximation to r, using some itera-

tive sheme.

Let m be the multiplicity of the zero r of P, By the

functions

P {z)

BRGSO

(z)
Z Z

o
=) = 51y

we define

(1) G(z) = ulz) [ulz) -v(z)] (Ostrowski’s function),
(2) N(z) = -:-urg (Newton's correction),
=1
(3) H(z) = 2[v(z) = (1+2)u(z)]  (Halley’s correction).

We recall that the correction terms (2) and (3) appear in the

iterative formulas

(u) Ei = zi+N(z.) {Shréder’s modification of Newt-
i . :
on’s method for multiple zeros,
see [17]),
(5) ii = zi+I—I(z.) ( modification of Halley’s method,

introduced by Hansen and Patrick
[8] for multiple zeros),



che convergence order two and three recpectively. We
iote that the order of multiplicity in the iterative formulas
4) and (5) take the valuesm = m, (i=1,...,k).

Using the logarithmic derivative of P we obtain

2 . 2 k

d P(z)" = Plz)P"(z) =2
- P( ) = =G( )= X -1, .

dz2 n z P(z)2 z j2=1 mJ(z r'J)

The value of Ostrowski’s function at the point z =z, is

[aege bl

wherefrom
=-1/2

(6) r, = 2 _yfn“;[c;(zi) - j;imj(zi—rj)_eJ L =10k,
The symbol * denotes that one of two values of square root
is chosen. One criterion for the choice of the appropriate va-
lue of square root has been established by Gargantini [7]. If
all zeros of P are real, then this criterion reduces to the

choice of sign which coincides to the sign of (real value) PP

Setting r; %‘zi in (6) and taking some approximations of
r; on the right-hand side of the identity (6), some modified
iterative processes of square root type for simultaneous fin-
ding of multiple complex zeros of a polynomial can be obtained
from (6). The convergence analyses of these methods is ess-
entially the same to that of the iterative methods considered
in [1], [2, Ch. 8], i1], and so, it will be omitted. For the
serial (single-step) methods, where new approximations are
used in the same iteratioh, we shall use the concept of the
R=-order of convergence (see [13]). The R~order of conver=-
gence of an iterative process IP with the limit point given
by the vector r = [rl soo r'kJ T (where Pisees,yT) are poly=-

nomial zeros) will be denoted by OR((IP), ).

J
step) square root iteration (shortly TS):
. 2 -1/2
(7) A= - [ Gl - ] mila;-2) ) (i=1,...,k).
< S

1° For rj: =z, (j#1) we get from (6) the parallel (total -

*

This method has been considered in [15] as a special case of

the generalised root iteration. It has been proved that the
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~.hvergence order of Ts—n?ethod (7) is four. Note that the
iterative method of the form (7) in terms of circular regions
has been analysed by Gargantini [7].

2° Taking r,: =£j (j <i) and Ty = 2 (j>1) in (6), we obtain

the serial (single-step) square root iteration (85S):
-17/2
o A =R =R
(8) z.=z.-/ﬁ'f[G(z.) - J m(z-2)"" - Y m.(z,~2,) ] .
i ‘i i oy jai 3 b7 #
{(i=1,...,k).
It has been proved in [16] that the R-order of convergence
1
of SS-method is at least 3 +u € (4 ES-Z) y Where u, e (1,-52-)

is the unique poSitive zero of the equation Ukm H=3=0(k 22).

3° Putting r'j==z.+N(z.) (i#j) in (6), where N(z,) is New-
ton’s correction given by (2), we obtain the parallel {total-
step) square root method with Newton’s correction (TSN):
_2-1/2
(9) zZ, = 2, m./m.[G(z.) - ) mlz, =z, =N{(z)) ]*

i i i i 70 i B j

A
(i=1,...,%).

Using similar procedure as in [11], it can be proved that the

convergence order of the modified method (9) is Ffive.

4° The iterative process (9) can be accelerated by approxi-
mating all zeros in a serial fashion, i.e. using new approxima-
tions immediately they become available (the so-called Gauss-
Seidel approach). In this way, substituting rj: = Ej (j<t),

s = zj+N(zj) (j >1) in (6), we derive single-step method

with Newton’s correction (SSN):

-1/2

o L =2 -2
(10) z =z _‘/El—i[e(zi) - ) . mj( zi-zj) - 2 ) mj( zi_zj-=N(zj)) ] §
j<i j> i
(i=1,...5k),
For the iterative process {10) we can prove the following

statement concerning the convergence order:
THEOREM 1: The lower bound of the R-order of convergence of the
iterative method (10) is given by
Op((10),7) 2.3 + T, €(6,7)
wheére %€ (2,4) is the unique positive root of the equation

Ko lees) =0 ks,
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. imilar as for TSW-method, we can apply Halley’s corr-
ction (3) for multiple zeros. Taking r,: = zj+I—1(zj) {(j#1) in
6), we obtain total-step method with Halley’s correction

JTSH): /
=1/2
. -2
(11) z; = z; -—,/mi[G(zi) ’j;i rnj(zi.,zij(zj)) ]*

| (i=1,...,k).
The iterative method constructed on the basis of formula (11)

has the convergence order equal to six.

6° Finally, setting rj: = ZAj (j<1i), rj: = zj + H(zj) (j>1) in (&),
we obtain single-step method with Halley’s correction (SSH):

. _-1/2
(12) £i=zi—/rn_i[G(zi)—jzimj(zi—zj) z—jzim.(zi—zj—H(zj)) 2]*
(i=1,...,k).

The following assertion for the method (12) is valid:

THEOREM 2: The lower bound of the R-order of convergence of the
i{terative method (12) is given by

0p((12),2) 2 3(1+a,) € (6,8),

where oy € (Jd.i) s the unique positive root of equation ok ~o~1=0 (k>2).

The increase of convergence of single-step methods (8),
(10) and (12) (in a serial fashion), compared to the corres-
ponding total=step methods (7), (9) and (11) (in a parallel
fashion}, is larger if the number of different zeros is sma-
ller. The acceleration of convergence is attained without add-
itional calculations; moreover,. single-step methods occupy less
storage space in digital computer (because the calculated app-

roximations immediately take positions of the former ones),

In practical realization of the iterative methods (9)=(12)
with Newton®’s and Halley’s corrections, before determination
. of new approximations it is desirable to evaluate u{z) and v(z)
and then, by (1), (2) and {(3) calculate G(z) and the wanting
corrections N(z) or H(z). In such a way, the methods with
correction terms claim slightly more of numerical operations
compared to the basic fourth order method (7). This point at
the effectiveness of the proposed modifications of square root

methods.



3. NUMERICAL RESULTS

In practice, it is convenient to apply a three-stage glo-

bally convergent composite algorithm (see [h]):

(a) Find an inclusion region of the complex plane cont-

aining all the zeros of a polynomial.

(b) Apply a slowly convergent search algorithm to ob=-
tain initial approximations to the zeros and calculate their re-
spective multiplicities. The multiplicities of these approximati=-
ons can be estimated, for example, using ( [9])

m, = lim u’(z).
Yooz, e,
i i
Other limiting formulas are described in ]:3} s [18] etc.

(c) Improve starting approximations with a rapidly con-
vergent iterative processes (for example, applying any of the

algorithms (7)=(12)) to any required accuracy.

In this section we shall apply the considered iterative
methods (7) - (12) of square root type for the stage (c). In
order to test these methods the routine on FORTRAN was
realised on HONEYWELL 66 system in double precision arith-
metic (about 18 significant digits). Before calculating new app-
roximations the values u(z()\)) and v(z()‘)) (r=1,2,... is the
iteration index, i=1,...,k), necessary for evaluation of Os-
trowski’s function (1), where calculated. The same values
were used for calculation of Newton’s and Halley’s correc=

tions in the formulas (9) - (12).

The proposed modifications were illustrated numerically

in the example of the polynomial
P(2) =27 =728 + 2027 ~ 282° - 1825 + 1102% - 9223 + Lu2® + 34524225

whose zeros are ry =1+2i, r =121, -1, r-h=3 with the

As the initial app-

2 e
multiplicities my = 2y m, = R, my = 3, m)_+ =2,
roximations to these zeros the following complex numbers we=
re takens

(0)
2

(o)

2.0 21 gz, 4 5

1
(0

=1.8-2,7, z =-0.3-0.8i,

It

2.3 -0.7i.



v.. —.ite of crude initial approximations, the presented iterati-

ve methods demonstrate very fast convergence. Numerical re-=

sults, obtained in the second iteration, are displayed in Table 1.

i Re {z;(2)) In {z;(2))
[ 1 0.999999853800923892  2.000000112716998844
TS 2 0.999999826741999847  -2.000000351383949125

(7) 3 -0.999999859207295616  -8.18 x 107/

4 3.000000527270300803  -3.48 x 10™°

1 0.999999939617346251 1.999999964305993363
ss 2 1.000000861310650873  -2.0000005098629926 14
(8) 3 0.999999399709498985  1.35 x 107>

4 3.000000000000030662  7.16 x 10” "

1 0.999999455077856744  2.000000212961094747
TSN 2 1.000000018147137107  -2.000000068835695135
(9) 3 0.999999974528732211  3.43x107°

4 3.000000722708680682  -9.58 x 10”°

1 0.999999894885117145  2,000000042747320793
SSN 2 0.999999994177457521  -2.000000000709903145
(10) 3 ~1.000000000007845003  3.82 x 10™ "

4 2.999999999999997525  -6.58 x 10717

1 1.000000000098386276  1.999999999890580897
TSH 2 1.000000000450329186  -2.00000000052 1585396
(11) 3 -0.999999999986166747  -2.93 x 10”2

4 3.000000000368704406  -6.92 x 10™'°

1 1.000000000032764666  2.000000000002146278
SSH 2 1.000000000000674921  -1.999999999997025086
(12) 3 -1.000000000000001322  2.74 x 10 °

4 3.000000000000000383  -2,01 x 10™°

Table 1

methods in our example (k=1L4) are
Op((10),r) 2z 5.586 and OE((lz),ra) 2 6,662,

We note that the lower bounds of the suggested serial

O ((8),r) 2 h.453,



10.

11.

12.

13,

k.

15,
16.

i7.

is.
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THE GENERALIZATION OF TEN RATIONAT
APPROXIMATIONS OF ITERATION FUNCTIONS

Dusan V. Slavié

ABSTRACT ¢

T,Newton (1676), E, Halley E1694%, P, L. Cebydev (1838), E. T,
Whittaker (19183, E,Durand (1960) and J.F.Traub (1961) gave
the one-point iteration functions for solving the equation
£f(x)= 0, The general result is given here which contains the
mentioned functions as particular cases or gives corrections
of gome coefficients in these functions in order to increase
the convergency order of the methods. In addition, the ques-
tions of autorship priorities are congidered.

GENERATIZACTJA DESET RACIONATINIH APROKSIMACIJA ITERAQIONIH
FUNKCIJA., I, Newton (1676), E, Halley (1694), P, L. ('ebydev
51838‘, E. T, Whittaker (1918), E, Durand (1960) i J.F, Traub

1961§ dali su Jednotadkaste iteracione funkcije za refava-
nje jednadine f(x)=0. Ovde je dat opsti rezultat koji
sadrZi pomenute iteracione funkcije kao posebne sludajeve ili
daje korekeije nekih koeficijenata u tim funkeijama u cilju
povedéanja reda konvergencije metoda, Pored toga, razmatrana
su i pitanja autorskog prioriteta,

Tet u, A, B, C be defined by
us= /', A=f"/(2£'), B=fm/(6f"), C=fV/(2u1'),
let r be the order of convergency of the method and let

Xppq = yr(xn). The classica; results then become:

- ' >Newton

) yp,=x

(2) Iz = X = u/(1-4u) Halley
(3) Yz =k - u - Ave | CebySev
() y,=x-u- Av? - (2 A2—B) w Cebysev
(5) ¥, =x%-u(1-4u)/(1-20usBu’) Whittaker
(6) Vo = X = u/(1=24u) Durand
(7) yeax-u(1-2Au)/(1-3Au+5B 2) Durand

27



(8) ¥, =x- u(1-3Aus3Bu") /(1 -HAu+(20%44B)u°4C0u>)  Durand
(9) 3, =x-u (A-(A2-B)u) /(A -(242-B)u) Durand
(10) Yy =X =1 /(1 - Au- (AE—B)uz) Traub

The literature is full of disagreements conserning the
authors of these formulas, Tt is claimed that already Heron
(two millenia ago) had known the iteration procedure x1> 0,
Ko = (xn + z/xn)/e tending to 21/2, which is a particu-
lar case of formula (1) for f = x° - 7 (z>0).

The method of tangents (1) is related to the names:
Ch?in Chiushao (1247), F.Vidte (1600), T.Harriot (1611), A,
Girard (1629), W.Oughtred (1647), T.Newton (1664, 1666, 1669,
1674, 1676, o..), JWallis (1685), J.Raphson (1690), ...

The method of tangent hyperbolas (2) is related to the
names: E,Halley (1694), J.H.Lambert (1770), P,Barlow (1814),
Hutton, E.Kobald (1891), E.T.,Whittaker (1918), J.V.Uspensky
(1927), V.A,Bailey (1941), J.S.Frame (1944), H.S.Wall (1948),
Hod,Hamilton (1950), G.S.Salehov (1951), o..

The method of osculatory inverse polynomials (3) and (4
ig related to the names: IL.Euler (1748), H.Blrmenn (1799),
P.S.Cebyev (1838), E.Schréder (1870), E.Bodewig (1935), ...

The method (5) is related to the names: H,Wronski(1811),
A.de Morgan (1868), E.T.Whittaker (1918), H.J.Hamilton (1946),
T.Kiss (1954), R.W.Snyder (1955), E.Durand (1960), V.L.Zagus-
kin (1960), A.P.Domorjad - D.K.Tika (1965), «..

The uniform and simple manner of writing the iteration
functions enables one to see more easily the iterations bet-
veen then, Each formula from (2) to (10), neglecting the
higher degrees of u, becomes formula (1). Negleeting the .
term with v’ formula (10) becomes (2), Neglecting the term
with v’ formula (4) becomes (3).

Iet a, b, ¢ be arbitrary parameters, Formula (10)
is equivalent to
(1+alu ¢+ (bA2+ cB) u2)
(1~ Au= (A°-B) u°) (1 + ah u +(bA% + cB) u”)

3 and ug, we get

yu_uxmu

wherefrom, upon neglecting the terms with u
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1+aldu + (bA2+ ciB)u2

1 + (a=1)Au + ((b=a=1)A%+ (c+1)B) u°

Neglecting terms with u2

11) Jy =x =1
from (11) it stems:

(12) y’3=ax«=u(1+aAu)/(1+(a==1)Au) o

Neglecting terms containing u, from formula (12) it stems (1),

Trom (12) for a=0 it follows (2), while for a =1 it
follows (3). For a=-1 we get the correction of formula (6)

(13) y3=x=u(1—Au)/(1 ~2Au)

Formula (13) stems also from (5) by neglecting the terms with
u® .

Prom (11) for a=1Ab=2Ac=1 it stems (4), for a= -1
Ab=c=0 it stems (5), for a=-b= ¢ =+ it stems (9),
for a=b=c=0 it stems (10).

For a=«2A bac=0 or 8a==2Ab==1A c=0 from for-
mula (11) it stems the correction of formula (7)
(14) g, =x-u(1-24u) /(1 =340 + (A% +3B) ) ,
(15) 3, =x-u (1-20u - (A2 28)u®) / (4 ~3Au +3Bu°) .

For a=-3A b=0 A c=3 from formula (11) it stems the
simplified formula (8)

(16) y4ax-au(1-3Au+318u2)/(1m4Au+(2A2+4B)u2) o

Formulas (1), (12), (11) are general rational approxima-
tions of one-point iteration functions for solving the equa-
tions in a sufficiently close neighborhood of the equationroot,
About the stages of solving the equation, see Slavié (1982),

3

A,Dordevié, N,Z.Klem, G.V.Milovanovié, D,S.Mitrinovig,
M.Obradovié, D.B.Popovié, D.D,Todié, P.M.Vasié have read this
paper in manuscript and have made some valuable remarks and

suegestions,
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ON®B-POINT ITERATION FUNCTIONS OF ARBITRARY CONVERGENCE ORDER

Duan V, Slavié

ABSTRACT :

The approximation of iteration fumctions for solving the equa-~
tion f(x) = O of an arbitrary convergence order, containing
the values of the function f and ita derivatives only at one
point, are dealt with in the present paper. Though the methods
are with the arbitrary convergence order 1, the coefficients
of methods up to r=5 were calculated effectively here. All
the methods dealt with here contain the Newbon tangent method
as their basic approximation for r=2. Two general one-point
iteration funetions are introduced.

JEDNOPACKASTE ITERACIONE FUNKCIJE PROIZVOLJNOG REDA KONVERGEN-
CIJE. Ovdé su razmabtrane aproksimacije dteracionih funkeija

za refavanje jednadina f(x)= 0 proizvoljnog reda konvergen-

cije koje sadrie vrednosti funkcije f i njenih izvoda samo u

jednoj tadki. Tako su metodi sa proizvoljnim redom konvergen—
cije v, ovde su koeficijenti metoda efektivno izradunati deo

r=5, Sve metode ovde razmatrane sadrfe Newtonov metod tange-
nata kao svoju osnovnu aproksimaciju za r=2. Uvedene su dve

opSte jednotalkaste iteracione funkeije.

ILet r be the convergence order of the method, Vo the
iteration function Xppl = yr(xn) and let

v

£ o . £ ‘ f'V
U = o A 2 o B = e [ =Y — °
o 2f ° 6"’ o4 ¢ ° 120"

P.L.CebySev and others (see T111) gave the results which,
in the notations given here, can be presented as

X - u Py U
ko ¥ 7

QDR

where

Dy =1s Dy =A, Dp=20%-B, pg=547-5aBaC, ...

The expansion (1) is equivalent to the power series of the ine

verse function.
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E.T.Whittaker gave the formula

ABG|
2 AB| .3 14AB| v
A |1A|u ui A
(2) Ip= X = u = - = oea
1|1A L AN AB s ap|1ABC
ui l ot a IS YIES:
Uitowu 1 ouil[0ut A
oO0u1

where on the »ight hand side v terms are to be taken, Formula
(2) contains the Halley formula.

yamlcnu/(1—Au).

E.T.Hamilton provided the method

(3) Jp=x-uR _,/R,,

where
2
R19R231, R3=1-=-Au, R4=1—2Au.+Bu,

Re = 1 - 380+ (A4 2B) v - Cud, ...

B

5
Method (3) is equivalent to method (2).

E.Durand gave an analogous result:
CON

where

B

xmuTr_1/’I‘r,

T1=1, T2=1—2Au, T5=1-—5Au+3Bu2,

Ty =1 - 44w+ (282 48) v - 4G W,

1 -« 54u+ (6A2+ 5RB) v - (5AB + 50)u5+ 5Duq', 0oe
Starting from (1), by means of the formula

k
(5) qo = 1 qk = - j§1 L1 qk—-i (k_\O) 9

we get thé formula

(6) 3 g
V.= X = U . g,u }
T (k=0 k /’
with the coefficients:

QG=1y qy=-4, ay=-(a%m), a5 = ~(28%-38B40), ..
Taquation (6) contains the Traub formula

Iy = % =u/ (1 -Au-(A2B)u?) .
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Starting from (6), by means of equation (5), we get the
ymtinued fraction

u u n u
7) Yp =X - oas
S5 = Sz = Sho1 = Sp
there 5 5 5
9 A (A nB%
S, = 1 S, = g, = S = sao
27 0 T3 TR AT 2 g U5 T R 2 wlag’

ormula (7) contains the Halley formula
J5 =x -u/(1-Au),
s well as the Durand formula
Yy =% - u (A= (A2B)u) / (A- (242-B)u) .
If the numerator and the denominator of the fraction in
6) are multiplied by the expansion
8) 1+ ahu+ (bAZ4ceB)u+ (AAD 4+ eAB+gl) W + ...,

where a, b, ¢, d, e, g, ... are arbitrary coefficients, then
by the method of undefined coefficients the Ffollowing expansion

ig obtained:

) 5 / (Tig ’
V.= X - ul > vu W, u
r (1{/50 k k=0 k ’

where

Vo= 1, w.o=1,

vy =ah, wy = (a=1) 4,

v2='bA2+ cB, Wy = (b—a~1)A2-+(c+1) B,

h dA3+eAB+gC9 Wy = (d;bea~2)53+(e=c+a+5)AB+(gm1)C, cos
Formula (9) containg Slavié®s formulas

Y5 =X - u (Y+adu) / (1+ (a=1)Au) |

1+adu+ (bA2+cB)u2

Iy = X =1
& 14+ (a=1)Au+ ((b-a=1)A2+(c+1)B)u2

If the numerator and the denominator of the fraction in
(6) are multiplied by an arbitrary paramcter t and if +1 =1
are added to. the denominator, we get



. D k\w
Y. =%~ tu (t~1+(1+f;tq u))¢a
T / k=1 k

\

Upon squaring the expression in brackebts we get
’ T2 A /20
x = tu (t—1+(2 hk_uk) )7
k=0

= -2tA, b= £(5-2) A% 4 2t B ,

i

(10) ¥,

where

h =1, h

o 1

hy = 26(t-2) A7 - 26(t=3)AB - 2tC, ...

1]

3

Formula (10) contains: for t = 2 ' the Euler formula
5= % -20/(1-(1-taw)'/?),

for t =1 the Ostrowski formula or the Durand formula
Yz = X -»u/(1-=-2Au)1/2 .

for t=n/(n=1) the Iaguerre formula
Vg = % - n11//(1+-((nm1)2au2n(n—1)A.u)1/2)

(n is the degree of the polynomial whose zero is sought), the
general Hansen - Patrick formula

x = tu/(b=1+(1-26aw)"2),

i

73
and for t=2 +the Traub formula

x -2u/(+(-thus 48u2)'72),

Iy
Equations (9) and (10) are generalization of more above
mentioned one-point iteration functions.

*

A, Dordevié, G.V.Milovanovié, D.S.Mitrinovié, W.Obradovié
DoB.Popovié, D.B,Todlé, P.M,Vasié heve read this paper in ma-
nuscript and have made some valuable remarks and sugestions.
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IN THE CHOICE OF THE INITIAL APPROXIMATION IN SOLVING OF THE
OPERATOR EGUATIONS BY THE NEWTON-KANTOROVIf METHOD

Milenko ¢ojbasic

BSTRACT:

he iterative procedure (seelg]) for the choice of the initial approwima-
ton 18 generalized for the case of solving the equation P(x)=0, where P
s a Frechet differentiable operator in a Banach space X. Separately, we
msider the case when P is a itntegral operator. A numerical example is
tven.

IZBORU POEETNE APROKSIMACIJE PRI RESAVANJU OPERATORSKIH JEDNAGINA NEW-
IN-KANTOROVIGEVOM METODOM. Iterativni postupak (v.[2]) =a izbor podetne
sroksimacije, generalisan je na sludad redavanja jednadine P(x)=0, gde
2 P Frechet diferencijabilan operator u Banach-ovom prostoru X. Razma-
sq ge primena na integralne jednadine. Dat je numeridki primer,

1.INTRODUCTION

Let P denote a Frechet differentiable operator in a Banach space
X. To find a solution x=x* of the equation

(1) P(x) =0,
one often applies Newton-Kantorovié®s method, whichtconsists of the constru-
ction of the sequence {xn} defined by
(2) Xy = xn=[P’(xn)]"],P(xn) N=0,1,25000s
starting from some suitable chosen xoeX. The sufficient conditions for the
success of this procedura are given by the famous theorem of L.V.Kantoro-
vig [1]: ’

THEOREM 1, If the conditions are satisfied

1) For the initial approximation Xgs the operator
P*(x,) (€B(X,Y)) has inverse, and [Tl < B,

2) IP(x )l <ng

3) Second derivative P"(x) is bounded in the region defined by (4);
iee. JIP"(x) | <K;

4) The constants ByangsK satisfy the inequality
(3)  h = B2noke 3 .

Then the equation (1) has the solution X*, which can be find in the ball
defined by

37



1-v1—2h0
(4) '|X~X0||_<_N(ho).n0 =T Ny 5

and the successive approximants x_ of the iterative procedure {2) converge

n
to x*, For the rapidity of convergence is valid
1 2"-1
”Xn-x*”_izn—_l-e(Zho) uno °

Now let the operator P be integral operator defined by
1
(5)  y(s) = x(s) = J K(s,t,x(t))dt;
0
and .the sequence xn(s) is formed ot the next way: the initial approximati-

on xo(s) is given. The next approximation x1(s) is defined from the linear
integral equation 1 ,

x](s)-xo(s)-gK’x(s,t,xo(t))(x](t)=x0(t))dt =e,(s),
where 1 ‘

eols) =/ K(sst,xy(t))dt-x (s).

o

The inequality (3) in this case becomes
(6)  h= (B+1)%in.ke ],
where, for the initial approximation xo(s),the kernel K;(s,t,xo(t)) =K(s,t)
has the resolvent G(s,t) and

1
S1G(s,t) [dt<B;  O<s<1,
0

where n,K have the same meaning as in the theorem 1,

2, THE CHOICE OF THE INITIAL APPROXIMATION

One of the most difficult problems in solving the equation (1) by
the Newton-Kantorovi¥ method is the choice of the initial approximation
g In the paper Dﬂ is given an iterative procedure for defining the ini-
tial approximation in solving the nonlinear system of equation by the Ne-
wton-Kantorovi& method, which after finite number of steps automatically
becomes the Newton-Kantorovi¢ method. We will generalize the method on the
case in solving the operator eguation (1).

The iterative procedure (2) is replaced by
(1) xp o PP O] PO -0, POxGT] (00,1500,
where : : ; :

= - — + 3
(8) oy =max[0,1 KPR (HL‘”—TP’(Xn)T _2” - Eizn -IEP’(X———F—Z]')]- i )1
The equation (7) can be taken in as the realization of the Newton-Kantoro-
vi¢ method for the equation
(9) P(X)=c,P(%q)=0 a,6f0,1].

LEMMA 1. If the operator [‘P’(xo)“:]"1

exists then:
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(a) The condition (3) is satisfied for each x N which is obtained
y the Newton-Kantorovi€ method for the equation (9), i.e.exists [P?(x j 1
nd
a0y 2K [P 0] 2 POx) - PUx o)l < T

(b) o, is non increasing sequence; i.e, Ope1 S0

Proof, we prove the lemma by induction ( see[2]and [5] For n=0 the
statement is trivial. We suppose that the inequality (10) is valid. Then
we get for (n+1)-st step

D Mg =x < P22

1
DoPlxo) ] <
2K]| [P ()17
Now let us prove that [P’(xn+1)]°] exists, Using (11) we get
9 B:I 9 3 -.' 9 E] i’
[1-1P2 ()] P O VI TP T oIl P2 ) P2 () ) <
Using the Banach theorem we conclude that the operator

(12)  H = (-(-[P* (x)] 7P (%,,9)))
has inverse and that is |{H '|| <2. From (12) we simply get

=l [P (7P ) D < 2,
and it follows that exists EP’(xn+1)j'1 ant that is
(13) [P (xS 20 P Ox )TN

“Using (13) we get

1
X417 Xpll < 3 <1

1 1 |
(14) o -0 ., = o - >0
T g 1 T X118 Al P x )17 2

Now, using the analogous Taylor®s formulae (see DJ) for differentiable

operators we find

1 POt) =0y PO LI PORy 4 )P Ot P2 (x )0, 11 (5l (o 1) <

AP x g 12
< N LI p(x ) (o) -

Finally using (11) and (14) we prove that the inequality (lo) is valid,
which together with (14) proves the Temma.,

Let us consider a convex region G which includes the solution x* of
the equation (1), Suppose im G, for the opérator PEGZ(G), axists '!P’(x)lmI
for each x&G, and P(x1)#P(x2) for x]#xz; x1,x2£G. Then x* is the unique so-
Tution of the equation (1) in G.

THEOREM 2. For each xoeG the iterative procedure (7) for finite nu-
mber of steps n, Teads to the point Xqsfor which the condition (3) of the



newton-Kantorovi¢ method is satisfied, and an=0, for nzng,

Proof. We first prove that the sequencel| [P’(xn)]'TH Is bounded, We
suppose the opposite; i.e, that || EP’(xn)]-1|]+m,n+w, By the Temma
0,0 e[o,1], then ty (10) P(xn)—mP(xo)° From the definition of the region
G and characteristics of mapping P, we conclude that P(G) is a convex re-
gion, P(x,)&P(G) and P(x*)=06P(G). Therefore is'aP(x,)eF(6).But then

x = P71 (aP(x )66,
and X e So

s -1 s -1
1P 37 B 0T e
which is in contradiction with assumption. Thus || [P’(xnf]—1llfp<wv Using
(8) and the Temma we get that for

n > ng (2] p(x ) Il -1),

o = 0 and the condition for applying the Newton-Kantorovi¢ method is sa-
tisfied.

NOTE 1.In the paper [2] is considered the case when P is the system
of nonlinear equations,

We suppose that for the integral equation (5) the condition (6) is
not satisfied. Using the Temma 1 for defining the initial approximation we
get the iterative procedure
(15) Bx, (s)- g K;(s,t,xn(t))Axn(t)dt=en(s)=suneo(s)9
where
(16) eq(s) = é K(s,‘t,xn(s))dt=xn(s)v

-

Then an‘is expressed by (8), where [P’(xn)J"] is the operator defined with
1
(17) Axn(s) = en(s)—uneo(s)— g Gn(s,t)(en(s)—eo(s))dt,

and Gn(s,t) is the resolvent of the integral equation with the kernel
K;(s,t,xn(t))° Using theorem 2 the successive approximative which are get
by solving the Tinear integral equation (15) lead to an for which is the
condition (6) for applying the NewtonKantorovit method is satisfied,

3. NUMERICAL EXAMPLE

The integral equation is given

2

(18)  x(s) = 1-0.4854,54s” + [ st arc tgx (t) dt,
]

whose exact solution is x*(s)=1+52v Let us try to use the Newton-Kantorovic

method for solving the equation (18),with the initial approximation xo(t)=1.
As the kernel
2 bt
k(s,t)=Kz(s,t,xy(t))= 5 .
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1s ueygenerated, according ﬁﬂ a resolvent can be find from the integral

equation for a resolvent,and we get
=3
G(s,t) = 5.st.
Using (16) and the estimation for K(see [4]), we can find B,n,K,h0
1

I 1= maxk(s)]= 0,9073,
S

i

B = max [|G(s,t)|dt
s 0

K = max ]K"z(s,t,u)l
s, t u

So, we can not use the Newton-Kantorovi¢ method. Let us apply the iterati-
ve procedure (15) for defining the initial approximation., We easily get
ao=0,4979° By solving the integral equation (15) for n = 0 we get

0,6495, h = (B+1)%nk=0,9959>5

x4 (s)=0,5021 52+0,01955; Xq1(s)=x(s)+Ax (s)=
= 1+0,0195s + 0,5021 52,

Likely for XT(S) we define the constants ny and B1:n1=0,4416, By=0,2222

(see[5]). Now it is’

hy = (By+1)%ny.K = 0,4284 < ]

E °
So, the condition for using the Newton-Kantorovi¢ method with the initial ap-
proximation x1(s)=1+0,0195.s + 0,5021,52, is satisfied, For the next itera-

tion we get
Bxqy(s) = 0,4979 szn0,0135.s; Xo(s) = x1(s)+Ax1(s)=52+1+0,0060.so
Since the exact solution is x*(s)=1+52, that is the maximal error

max |x*(s) =X, (s) | = max0, 006, s|= 0,06<107
S S

NOTE 2, In the paper [4] for x (s) = %ﬂone obtains h =0,451<0,5 so
it is possible to use the Newton-Kantorovi¢ method immediatelly. Here
xq(5)=52+0,0067 s+1,
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NUMERICAL SOLUTION OF THE FREDHOLM INTEGRAL EQUATION OF
THE FIRST KIND WITH LOGARITHMIC SINGULARITY IN THE KERNEL

TomaZ Slivnik, Gabrijel Tom&id

ABSTRACT:

The paper describes a numerical method for the solution of
the Fredholm integral equationof the first kind with loga=s
rithmic singularity in the kernel. The method is based on
proper substitution for the singularity and on the use of
generalized quadrature formulas which allow a faster con-

vegence.

NUMERICNA RESITEV FREDHOLMOVE INTEGRALSKE ENACBE PRVE VRSTE
Z LOGARITMICNO ‘SINGULARNOSTJO V JEDRU. Vv ¢lanku je opisana
numericdna metoda za res$itev Fredholmove integralske enadbe
z logaritmiéno singularnostjo v jedru. V metodi je uporab-
ljena posebna substitucija in posplosene kvadraturne formu-

le, ki omogodajo hitro konvergenco.

1. INTRODUCTION

The solutions of electrostatic problems can be often
formulated by the Fredholm integral equations of the first
kind. For instance the charge distribution ¢(x) on the sur-
face of the microstrip transmission line is given in the

following form
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1
(1) 1= [ a(y)G(x,y) dy -1<x<1
-1

where

unz + (iéx)2

Gy) = A § k™1 oag)
‘ n=1 b(n-1) %4 (22Y)?

where A, K<1, d are given constants.

It is well-known that the numerical solution of
Fredholm integral equations is not numerically stable process,
namely the condition numbers of matrices become with the or-
der of matrices larger and larger. Té obfain stable solutions
some kind of regularization must be used. Nevertheless in ma-
ny cases of Fredholm equations of the first kind are solved
and very usable results are obtained by uging standard numeri-
cal processes (with no regularization),[3]. In all such cas-
es the kernel has logarithmic singularity. In this paper the
numerical method for the solution of equation (1) is descri-
bed. For the improvment of the convergence the Richardson ex-

trapolation technique can be used.

2. STATEMENT OF THE PROBLEM

We are trying to find

1

Q = [ oly) dy
-1

where ¢(y) is the solution of the equation (1). The kernel

i

G(x,y) has a logarthmic singularity

(2) G(x,y) = C lnix-y! + K(x,y)

where K(x,y) is a continous fun ction. It is known that the



s&lution has singularities at the both ends of the interval

/

E1,£[ and o(y) can be represented as (Eﬂ )

0(y) = =
-y

where f(y) is the continous function.

3. METHOD FOR THE SOLUTION

For numerical +{reatment of the equation (1) we apply

the generalized quadrature formulas introduced by K.Atkinson,

Ol By introducing new variables

X = COsq

45

y = cosg
we get
m
(3) 1 = g S(a){lnlcosa - cosg| + H(“,B)] do
B E[O, ﬂ]
where S (o) = o(coso)sing and H(gy,g) are continous functions.
The kernel can be rewritten
. g~B . o + B
sin 5 I sin—7y
1n|cosa - cosg| = 1n = + 1n|or =S YCTT)

+ 1n|o- 8|+ 1n] a+g|+ 1n| 2y - @~ B ﬁ,

where the first two terms are continous, the last three terms

are singular. Continous parts can be approximated by using
standard quadrature formulas, the singular parts are appro-
ximated by introducing the generalized guadrature formulas
of the Newton-Cotes type.

For instance by using the "midpoint rule" we obtain



m n
$Cao) 1 .= = ..S(R.
g @) In|cosg; - cosalda jgl o 5 (BJ)

where
= (5 - X = X
Bi = (1 z)h, h = =
and B. - B, 8: + B
sin&—z———l sin—i—z——]——
45 = 1~ +h ln| ———5—no| +
J (2n-8;-85)(Bs+85) .- B
‘ 2

+ 3 h Inh + hleg(i-3) + ¢5(1-i-3) + ¢(2n-i-j+1)|

1
1 1 1 1 1
¢0(£) = é ln|l+§ - u|du = (1+§)ln|1+§[ - (1"5)1nl1'§l— 1

Now the well-known method gives a system of linear equations,
which can be solved by standard methods. Observing that

1 T
Q = [ oly)dy = [ S(a) do
0

the quantity Q may be computed.

4. THE RICHARDSON EXTRAPOLATION

Suppose that Q can be written in the form

(4)  Q = Q(h) + A h® + B no*l 4

where coefficients A,B,... are independent of h. If we consi-
der only the first term of the series (4), we get
Qa2 Q(h) + A n*
o= b_ E [+3
Q"’Q(Z) + A(Q)
hence

Q - Q1) 2% -,
Sy T
Q - Qe

Suppose that (4) is valid, but we do not know the value of o.



Nevertheless we can compute o experimently for some cases,

for whic the exact solution is known. The equation

1
filn|x - y|f(y)dy = 1
-1

has the exact solution ([#])

£(y) = - CR—
wln 2v1 - vy
and 1 1
_{ f(y)dy = = 55— = -1
By the numerical way (midpoint rule) we
results
n Q r
1 ~1°56525 46
2 -1°u47283 %°0i
b4 -1°145021 4008
8 =1 ubusy 4°03
16 -1°44316

‘442695

get the following

and we can assume that the convergence of the method is

quadratic.

The well-known Richan#oh’s elimination gives the table

-1%56525

41'uu202.
-1°47283 4067
S1785021 4. o6
S1THHHST el
-1°44316

and it is evident that the second column converges very fast

to the solution.

a7



We compute extensive tables of Q for the different
values of constants K and d. When using, for instance, .ge-
neralized Simpson”s rule, the four point approximation com-
pletely agrees with the results which can be find in the 1li-

terature,[ﬂ.
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ON A CLASS OF COMPLEX POLYNOMIALS HAVING ALL ZEROS
IN A HALF DIsSC

WALTER GAUTSCHI AND GRADIMIR V. MILOVANOVIC

4BSTRACT:

Je study the location of thé zeros of the polynomial pn(z) = nn(z) -

-1 0, T (2) , where {TTk} is a system of monic polynomials orthogo-

al with respect to an even weight function on (-a,a), 0<a<«, and en—l
's a real constant. We shaw that all zeros of p, lie in the upper half
lise |zl <a N Imz>0, <f 0 < 8, < nn(a)/nn_l(a), and in the lower

walf dise |z| <a NImz < 0, if —nn(a)/nn“_l(a) <8, < 0. The ultrasph-

rical wetght function is considered as an example.

0 KLASI KOMPLEKSNIH POLINOMA KOJI IMAJU SVE NULE U POLUKRUGU.U radu se raz-

T 2
1Ty (B)s

gde je {ﬂk} sistem monidnih polinoma ortogonalnih u odnosu na parnu te-

matra problem lokalizacije nula polinoma pn(z) = nn(z) - 18

Finsku funkciju na (~a,a), 0<a < =, a en realna konstanta. Dokazujemo

-1
da sve nule polinoma p, lefe u gornjem polukrugu |z]<a ANImz> 0, ako

je 0 < 8, < ﬂn(a)/nn__l(a), a u donjem polukrugu |z| <a NImz<0, dako

1
Je - (a)/ﬂn_l(a) < eﬂ_l < 0. Kao primer razmatrana je ultrasferna te-

Finska funkcija.

1. INTRODUCTION

In a series of papers, Specht [2] studied the location
of the zeros of polynomials expressed as linear combinations
of orthogonal polynomials. He obtained various bounds for the
modulus of the imaginary part of an arbitrary zero in terms
of the expansion coefficients and certain quantities depending
only on the respective orthogonal polynomials. Giroux [1]
sharpened some of these results by providing bounds for the
sum of the moduli of the imaginary parts of all zeros. In the
process of doing so, he also stated as a corollary the follo-
wing result.
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Theorem A, Let

f(x)==(x—xl)(x—x2)...(x—xn),
g(X)==(x—yl)(x—y2)...(x—yn),
with X)SY) Xy e <Yy <X Then, for any real number c,

half strip Imz2>0, x
half strip.

Here we consider special linear combinations of the

1 n’ 9% 2== 225 22 =

form

(1.1) pn(z) zﬂn(Z) “ien_lﬂn_‘l(z))

where {nk} is a system of monic polynomials orthogonal with
respect to an even weight function on (-a,a), 0 <a<e , and
en—l is a real constant. We combine Theorem A with Rouché& “g
theorem to show, in this case, that all zeros of P, under
appropriate restrictions on en—l’ are contained in a half disc
of radius a. The result is illustrated in the case of Gegen-

bauver polynomials.

2. LOCATION OF THE ZEROS OF py,(z)

Let w(x) be an even weight function on (-a,a),0<a <.
Then the monic polynomials orthogonal with respect to w(x)

satisfy a three-term recurrence relation of the form

wk+l(2) =ZTrk(Z) = Byeme_1(2), k=0,1,...,
(2.1)

T\'_l(Z) =0, n,(z) =1,

0

where Bk >0. Since ﬂk(—z)= (—1)kwk(z), k=0,1,..., the polyno-

mial (1.1) can be expanded in the form

pn(z)=:z -ie, 2 + .
so that
n
kilﬁ<=len—l’
hence
n
EImcy, =6 .,



here 1;1, 62’ ...,gn are the zeros of the polynomial (1.1).

By Theorem A and (2.2) all zeros of the polynomial
1.1) lie in the half strip

v

(2.3) Imz >0, ~a<Rez< a 1if en_l>0,
or
(2.37) Imz <0, =-a<Rez< a 1if en—l<0’

strict inequality holding in the imaginary part, since pn(z)
for en_l7é0 cannot have real zeros. Of course, if en_’l=0,

all zeros lie in (-a,a).

Let Da be the disc Da= {z: z[<a} and BDa its boundary.

Je first prove the following auxiliary result.

Lemma., For each z& BDa one has

1Tk(Z) Trk(a)

Itv

, k=1,2,..

-1 (%) -1 (2)

Proof. Let ry (2) =TTk(Z)/1Tk_l(Z) and z&9D, . We seek
lower bounds T (not depending on z) of frk(z)[ for zEBDa,
]rk(z)] 21, zEBDa.

From the recurrence relation (2.1) there follows

B8

k~-1
(2.5) rk(z)=z—--—-————, k=2,3,...,

Tie-1(2) ’

where rl(z) =2z. We can take, therefore,

8
(2.6) r,=a, r = a- k-1 x=2,3,...

Fr-1

Using the usual notation of continued fraction, we ob-

tain from (2.6)

o1 Proz By

a - a = .a

It is easily seen that rk=nk(a)/nk_l(a) ;, k>1. Indeed, using
(2.1),
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Br_1 Mo (@) _ m (@) O
rk= a - = a = Bk-l = .
Tyel -1 (@) T (@) -
By a similar argument one could show that
w, {a) m, (2z)
2a - . > k R zEBDa,
ALY M1 (2)
but this will not be needed in the following.
Theorem. If the constant 6_ satisfies 0 <@ <
_—— n-1 —= n-1

<Tl'n(a)/7Tn_l(a), then all zeros of the polynomial (1.1) lie

in the upper half disc
lz] ~a A Imz -0.

If -nn(a)/nn_l(a) <en=—l <0, then all zeros of (1.l) are in

the lower half disc

|z| <a A Imz< 0.

Proof. By (2.4) we have

T (z) m_(a)
(2.7) n ' > 0 . zEBDa,
"-1(2) -1 (a)
hence, if «w (a)/m _,(a)> len-—l| ,
|nn(z)l > |6n_lwn__l(z)|, z&3D,.

Applying Rouché'’s theorem to (1.1), we conclude that all ze-
ros of the polynomial P, lie in the open disc Da' Combining
this with (2.3) or (2.37), we obtain the assertions of the

theorem. ]

3. EXAMPLE: GEGENBAUER POLYNOMIALS

We now consider the ultraspherical weight function

w(x) = (l—xz))‘—l/2 (A>~=1/2) on (-1,1). In this case, a=1, and

1
z) = _ Kkt C]ﬁ(x) , where C]i

2k(x)k
mial and (“k Pochhammer’s symbol, ())

Trk( (x) is the Gegenbauer polyno-

k= A(A+1) ... (A+k-1) .
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Since
AR " ) ke
n_ (D) 20k-1) ¢l_ (1) 20vk-1)
ind
e (x) = 2" TNy, mck,

there D is the differentiation operator, our theorem implies

-he following

Gorollary. Let nk(z) denote the monic Gegenbauer poly-

iomial of degree k with parameter . If the constant en— sa-

1
:isfies O <01 < _2itn-1 , then all zeros of the polynomial
) 2 (A+n-1)
>n(z) = nn(z) —1en_lnn_l(z) and of its derivatives lie in the
pper half disc |z|<1 A Imz>0. If - 2am-l < 0, then
== n-1 _—
2(x+n-1)

The upper bound (2x+n-1)/(2(x+n-1)) for!en—ll becomes
n/(2n-1) in the case of Legendre polynomials (A=1/2), and 1/2

in the case of Chebyshev polynomials (A=0).
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ON THE OPTIMAL CIRCULAR CENTERED FORM

Liiljana D. Petkovid
BSTRACT:

ome including circular approximations of the closed set {f(z) : zeZ}
f is a closed complex function and 7 = {c; r} is a disk) in the cen-
eved form {f(c) ; R} are considered in this paper. The optimal cente-
ed form {f(e) ; Ro}, where Ry = max |f(c) - f(z)| (ze2), is compared
o the centered forms which use Tayloy’s series. The optimal radius R

s determined for some standard (library) functions. 0

) OPTIMALNOJ KRUZNQOJ CENTRALNOJ FORMI. U ovom radu su razmatra-
e neke ukljudujude kruBne aproksimacije zatvorenog skupa {f(z): ze 7}
f Je zatvorena kompleksna funkcija © Z = {e¢; r} je disk) u centralnoj
ormi {f(c) ; RY. Optimalna centralna forma {f(c) ; Rp}l, gde je Rp =

L 1f'(c) - f‘(z)] (z€1%), uporedjena je sa centralnim formama koje ko-
riste Taylorov red. Za neke standardne (bibliotedke) funkeije odredjen
Jje optimalni radijus R,

0

Let Z = {w:|w-z| <r} = {z3r} (zeC, r>0) be a disk with the
center z and the radius r. The set of all disks will be denoted with
K(C). Let f be a complex valued function of a complex variable, anali-
tical on the union of all disks which belong to the set USK(C), such
that the set

f*(Z) = {f(z):zel} = || {f(2)}
zel

is closed for each ZeUy = U. f*(Z) will be called the closed uni-
ted extension of the function f over Z. Since the closed region f*(Z)
is not a disk in general, it is. of interest for evaluation in circular
arithmetic to introduce a disk W which includes the closed set f*(Z),
that is W= f*(Z).

The circular region F(Z) such that the inclusion F(Z)= f*(Z)
holds for each ZeUy is the inclusive disk for the range f*(Z). Cove-
ring of the exact range f*(Z) by the inclusive disk will be sometimes
called including approximation, or, shorter I-approximation. Obvi=-
ously. I-approximation is better if the quotient area { f*(Z)}/area{F(Z)}
is closer to 1.
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In this paper we shall consider inclusive disks of the form F(Z)=
{f(c)s R} (Z={c; r}). This form is centered and it will be shortly ca-
1led the C-form.

Among all inclusive disks with the C-form, the best I-approxima-
tion is obtained by the disk with the radius

(n R =R, =Zma§ [f(z) - f(c)] .
[

The disk FO(Z)= {f(c) s Rot 1s called the inclusive disk with the
optimal C-form.

Using computer programs, the special attention is dedicated to

the computation of standard {subroutine library) functions(ez, nz,
arctgz, sinz, cos z, zn, 21/n). For some of these functions it is

possible to find the optimal radius R0 according to (1). In a such pro-
cedure the following simple assertions, which we give without the proof,

will be used.
LEMMA 1: Let L be a closed region in complex plane. If there
exists we L such that |f(€)|;§|f(w)[ for each t el then

max [f(c)| = [flw)].
L el

Lemma 2: (L1]), p. 70). The inequality
lez—lléelzl-—l

18 valid for arbitrary ze C.

LEMMA 3: Let u and v be real functions of a real variable
tela,b], and let f(t)=u(t) + iv(t). If f is R-integrable

function, then

b b
fscerasl < flrcer)ae,

a a
LEMMA 4: ([4], p. 370). If the condition ap >0 holds for

all k = 0,1,... in the disk |z| <4, then
+ oo 4 oo
k k
D agst | < ] oap]s] for |z| <a.
k=0 k=0 ¥

Let r be the boundary of the disk Z={c;r}, c= ]c[eiY and let
r :
Q= [b 22n), p = TE[ . Then, an arbitrary point zer can be expressed
by
z=c+re'®= c(14pe™) (0,0e0).



We shall now determine the optimal radius RO for some standard

synctions.
(2) = ¢
Using Lemma 1 and Lemma 2 we get _
Ry = max le? - €% = |e°| max |ere1e-1| = e (e" -
ZET 6EQ
f(z) = Inz.

s ——————

let 0627, i.e. p<1 is valid, and let w=pe'®. Since |w| <1, with
regard to Lemma 3 it foHows
P
y
0

1

p
uu
[1n(14w) ’ dt‘ !f‘“ dt
1+te 14+t 1+te'?

P p
- dt dt _ .
/(1+t2+2tc05w)1/2 ;(“)/q_t n(1=p)-
0

Since z = ¢(1+w), on the basis of Lemma 1 we obtain

Ry =max |Inz -Inc| =max |Tn (T+)] = -1n (1-p) .
ZET zeT

iw\" :
Let g{w) = (1+pe ™) -1, weq. Since

n .
Ry = max 2" =" = [c| max [g(w)| = |c|" max | T (I)(pe’)¥],
zZer we R we k=1
in view of Lemma 4 (taking 3 = (E) and ¢ = pe“f’) we obtain
n : .
= Jel” max Jg(w)] = |c|"g(0) = (fe|+r)" - [c|" .
wef .
f(z) = 2/"
We shall consider only the case 0¢Z={c;r} (p<1). Let h(w)=
1—(1+pe1“’)1/n, we Q. Using the development in binomial series, we find
Ry = max fz1/”—c1/n[ = ]c[“n max |h{w)]
zel weR
- |C|1/n max 2 <1/n> (~pe1‘”)k .
we {k=1
’ .
Applying Lemma 4 for a, l<1/n> and z = -pe'”, we obtain
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LICE) e

so that

max hw) = el nen) = el - (le]-n) N

Another type of inclusive circular extension with the C-form,
based on the development of analytical function by Taylor series, was
considered in [5]:

Let f be an analytical function, defined on the union of all di-
sks that belongtothe set U K(C), such ‘that f%(Z) = {f(z) :zeZ} is
a closed region for each Z={c;r}e U1§;lL Then, for the closed uni-
ted extension f*(Z) we have
(2)  fHZ)= Fp(Z) = {flc) ;5 Ryl Ry kz1———__ET_____

The disk FT(Z) is called Taylor®s inclusive disk and Ry
Taylor’s radius.

We §ha11 now compare Taylor’s form with the optimal C-form. Let
z=c+re't (teq) be a point on the boundary I of the disk Z={c;r}
and Tet u*er be the point which maximizes |f(z) - f(c)|. Then Rg =
| F(uw)-F(c)|. Using Taylor series we get

e f<k)(c)(u* -c)k
R, = *) - = 2 A\e)um-e)
o7 Iftw)-fe)l = | 1, u
+to (k) k
S ! k§C)lr = Ry

which means FO(Z)EE.FT(Z) for each ZeU;= K(C), i.e. the I-appro-
ximation by the disk with optimal C-form is better than by Taylor’s
inclusive disk. On the other hand, we use clearly defined procedure
to evaluate RT, while the evaluation of RO is more complicated and
often leads to hard extremal problems. For this reason, it is of in-
terest to apply the disk FT(Z) instead of FO(Z), specially in the ca-
ses where RT is close to RO' It can be shown that for the above con-
sidered standard functions the equality Ry=R; is valid (see [6]). In
the remaining cases the inequality RO <RT holds and, consequently,
FolZ) = F(Z) (see Borsken [2]).
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faylor®s centered form (2) uses Taylor’s development of an ana-
ytical function f around the center ¢ of domain Z={c; r}. By expand-
ng f(z) as Taylor’s series around the origin (Maclaurin’s series), we

btain

o k
(3) f(z) = +szk .
k=0 k!

In the sequel we shall use the following formula for the power of
a disk Z={c; r}

(4) A T AR AR (S LR O

which can be obtained from the definition for multiplication of two di-
sks, introduced by Gargantini and Henrici [3].

Natural circular extension of (3) using (4) results in a circu-
lar interval

- 1 10000 gk T #890) gk 5O gy

l ’

k=1 k!
ar
(5) Fp(Z) = {f(c) 5 Rp}=2 {f(z) 1zeZ} = £%(Z),
where
6 R z ’f Ol (fef +r)*-1el®)

The inclusive disk (5) will be called <the power centerved form.

According to the developing procedure it is normally to expect
that the power centered form is worse I-approximation for the exact
region f*(Z) than the Taylor’s centered form, Thus, we conjecture

(7) FH(Z) SFp(2).

1l .
The inclusion (7) leads to an equivalent condition in the form of ine-
quality RT;RP, i.e.

R A QT R T )] ‘

ek
k=1 K k=1 k! <)

((Ic|+r)

ExampLE 1, Let
(2) = § o (a0
q(z) = a,z a, eC
Lok k

be a polynomial of degree n. On the basis of (2), (5) and (6) we find
0.(2) = {q(c) ; 3 L el
T { k21 Kl ;i



and

2 k k
%(2) = Gate) 5 L lad (el )= 1elD) .
The inequatlity

k k n
RG] TIPSR L
k=t k! k=1

has been proved in [7], which gives Q;(Z) = Qp(Z).

ExampLE 2, let f(z)
Fr(Z) = €% 5 [e°f(e"- 1)),
F(2) = (e 5 elcl(em -1y,

e? and Z={c ;.r} be arbitrary disk. Then

Since |eC\;e!Cl it follows FT(Z) S;FP(Z) in the case of exponential
function.

The above examples confiym the conjecture (7), It is interesting
that other considered examples also verify the inclusion (7). But, we
are not able to prove the inequality (8) in general case (for arbitrary
f) so that the conjectrure (7) remains as an open problem.
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TWO METHODS FOR THE CURVE DRAWING IN THE PLANE
Dobrilo D. Todié, Dejen V. Tosié
ABSTRACT :

Two methods for the drawing of the curve, given by the equ-
ation F(x,y) = O, are presented. The first method is based
on a differential equation y'==ka/B&, which enables the

the prediction of the next point of a given curve. The po =
gition of a predicted point is corrected. The second method
has a random choice of the point with the same correction
as in the first method. The corresponding program package
TPLTS is realised in BASIC.

DVA METODA ZA CRTANJE KRIVIH U RAVNI., Data su dva metoda za
crtanje krive date jednadinom F(x,y)ﬁsos Prvi metod Jje za -~
snovan na formivanju diferencijalne jednadine y’ szk/Fy,

koja omoguéava predikciju sledeée tadke krive. PoloZaj ove
tadke je korigovan. Drugi mebtod ima sludajni izbor tacdke sa
istom korekcijom kao o prvom metodu. Qdgovarajuéi programs-
ki paket TPLTS realizovan Jje u BASICu.

1. INTRODUCTION

The curve tracing and curve drawing belongs to the
clagsic exercise. Many papers and books are devoted to the
qualitative curve representation (by searching of the cha-
racteristic points- particuiarly singular points), to the
investigation of the behaviour of the curve in the neigh-
bourhood thoge points, the posifion‘of asymptots, number of
branches, etc. Thus we can draw a skech of the curve which
gives some approximation to the truth.

If the equation of the curve is given in an explicit
or parvametric form, then we have trivial case. The special
case appesrs when the equation is presented in implicit
form, i.e. F(x,y) =0, where F is an differentiable function.

In the present paper we expose two methods for the
curve drawing. This implies that the curve is to be drawn,
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with the utmost possible degree of accuracy, has to be con-
sidered for this purpose at large number of points on the
curve.

The first method will be called "implicit" and the
gsecond one "random". Obtained results for the implicit me-
thod can be applied in solving of the differential equati-
ons, which are given in the implicit form.

2, IMPLICIT METHOD

The method is based on the following principle. Let
T(x,y) =0 be the equation of the curve, where F is diffe -
rentiable function. We calculate partial derivatives %% =

= FX(X,y) and. %% = Fy(x,y)m Since dF =0, we obtain the

differential equation
FX(X9:7)

Let Mo(xo,yo) be given initial point belonging to

the curve F(x,y) =0. We introduce the step h and parameters
By &nd 8. in the set {-1,1}. Those parameters give the

code of initial direction. For example, if Sy=1and S =1,
we take Ax=h and Ay=h; if Sx====1 and Sy:l., then Ax=

= =h and Ay=h,

First of all we will caleculate Fx(xo’yo) and Fykxo,yo).
If ‘Fx(xo‘yo)\é |Fy(xo,yo)[ , i.e. |¥y'V&1, by applying the
simple Euler method, the prediction of the next point
Mlkxlgyl) can be obtained, where
T (x_,¥.)
5 o Txo'o
x1e=x0-fbxh, yl.-yo-+5x11 _— e ] o
y O‘)yo

If |Fx(xo,yo)‘> [Fy(xo,yoﬂ, i.e. |y} » 1, then
F(x_,9.)
}{:X.{«Shm;fmmguw—gm VY. =¥ +8_h
1 o' "y 9 1 90 My e
F (x,,5,)

The position of the predicted noint Ml can be corre-
cted by the Newbton-~Raphson method. If
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|FX(X1,yl)l > le(xl9yl)|?
we correct only *q by the formula
53 F(xl"‘yl)
X" o= Ky -
FX(Xl’yl)
In the another case, when |F (x;,y,)| % IFy(xl,yl)l9

the ordinate vy igs to be corrected by

% Fxy559)
R yenen i
A R
There is also the second method for correction. Let
us observe the surface 2z =TF(x,y) and the tangent-plane at
the point (xl,yl,F(xl,yl)). The orthogonal projection of

the point Ml(xl,yl) to the straight line, which is the in-

tersection of tangent-plane with xy-plane, hasg coordinates

- chleyl) FX(Xl’yl)
Xl = Xl'm ]

2
Fx(x19y1> '%chxlayl)g

F(Xlsyl) F§(xl’yl)

o
-
i

A P 2
FX(xl,yl) -+Fy(x1,y1)

After the process of a correction we can calculate
new coefficients 5, and Sya Namely, if sgn(xln-xo)> 0,

then 8 =1, and if sgn(xle-xo)é 0, we have S_=-1. The pa-
rameter Sy can be obtained by the analogous procedure.

New point Mgkxg,y2) we will obtain by the same me-
thod, etc.

The application of above described implicit method
can be inhibited in the vicinity of the sinsular points,
because partial derivatives FX and F_ are in the nearest of
zero, Besides, some branch of the curve can be lost, parti-
cularly in the case of complex curves. Those difficulties
can be avoided by the following method.



%, RANDOM METHOD

The application of random method is oriented to the
curve drawing in a given domain in the xy-plane. A domain
is usually chosen to be the rectangle R, bounded by lines
x=8, X=b, y=¢, ¥v=d. The equation of the curve is again
F(x,y) = 0, where P is differentiable function.

Pirst ao all, we choose coordinates of the point be-~
longing to the rectangle R by the random generator with the
uniform distribution. Afterwards, applying the above descri=-
bed methods, we try to correct predicted point, obtained in
such manner. If corrected point does not belong to the cur-
ve (with given degree of accuracy), we choose new point,
ete.

The random method ig completely oriented for the use
on computers., It is very efficient for the drawing of curves
possessing singular points and several branches. The random
method can be succesfully coupled with the implicit method,

where parameters Sx and Sy are also at random choosen.

4, PROGRAM REALIZATION

Both methods are realized by the program TPLTS
(To%ié PLoT Software) in the BASIC, The concept of the pro-
gram is realised to be interactive. The modul UNIC3S (UNI-
versal Coordinate System) for the drawing of the frame,
coordinate net, axis, etc., is particularly developed,

The input activity includes the forming of labels
Fy’ the enter of number of curve points, maximum
nunber of corrections of one point, the correction code

(a choice of the method for correction), the code of the
method for drawing (random, implicit or coupled), the tole-
rance of the function value (usually 10—6) which is a cri-
terion for the break of the correction, the step h for im-
plicit method, the code of a initial direction (Sx and Sy),
coordinates of initial point. After the execution of the
program there is a possibility for the restart of some
parts of the program, in the aim to obtain new points.



As an illustration of the implicit and random method,
wo curves are plotted in figures. Those examples are taken
rom the extraordinary book: Persival Frost: An elementary
treatise of curve tracing. Fourth edition, London 1926,
Macmillan and Co.

1° XBmxgymxy2+y530a
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Randon Implicit

2% (5% %) (x = 1)(x - 3)=2(y%ex? o 2x)® |

Randon Tmplicit
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OPERATING WITH A SPARSE NORMAL EQUATIONS MATRIX

Brankica Cigrovski, Miljenko Lapaine, Svetozar Petrovié

BSTRACT:

n natural and applied sciences, especially in geodesy, sym-
etric normal equations matrices Q=A“A containing relatively
ew nonzero elements occur quite often., Then, one frequently
earranges the matrix § (interchanging columns and rows simul-
aneously) to bring it to a form more convenient for further
reatment, The authors of the present paper have come to see
hat in such cases it would make sense to reqrrange first the
riginal matrix A, and only then to form Q=A%4. So they have
elaborated one such procedure and tested it.

OPERIRANJE S MATRICOM NORMALNIH JEDNADZBI KOJA SADR?I'RELA'
TIVNO MALO ELEMENATA RAZLICITIH OD NULE, U prirodnim < teh-
nidkim naukama, a posebno u geodeziji neri%etko se Javlijgagju
simetridne matrice normalnih jednadZbi Q=A"A koje sadrZe rela-
tivno malo elemenata raszsliditih od nule, Tada se desto matrica
Q@ preuredjuje (medjusobnim zamjenama stupaca < istovremeno
redaka) da bi bila pogodnija za daljnju obradu. U ovom radu

se uodava da bi u takvim sludajevima imalo smisla najprije
preurediti polaznu matricu A, pa tek onda formirati §=At4.
Autori su razradili jedan takav postupak < testirvalil ga.

In [2] it was necessary to estimate the accuracy of the 2nd order
triangulation net which consisted of 88 trigonometric points intercon-
nected by 666 observed directions. In fact, it was to evaluate the net
as a whole, as well as certain parts of it.

On the basis of r.m.s. errors from station adjustment one can
obtain only inner accuracy, i.e. the precision of observations. The outer
accuracy can be determined only from true errors, the so called miscio-
sures f of triangles. Since in theconsidered net directions were observed
and not angles, misclosures were mutually dependent quantities, therefore
one should calculate the r.m.s. error of an observed direction using the
formula

67



(1) wooe /O

(e.g. [71 p. 132, [ 1] p. 257, [11] p. 3). The symmetric nxn-matrix Q=AtA
is the so-called correlation matrix (the normal equations matrix), the
mxn-matrix A being a condition equations matrix, and f is a nxi-matrix
of misclosures. The number of trianglies is n and that of directions m,
In our examples n varied from 19 to 180 (see Table 1), m being at most
666. o

In all more precise geodetic operations (e.g. 1st and 2nd order
triangulation) it is required to give an accuracy estimate prior to adjust-
ment. Therefore, it had been common in geodetic practices to determine
the r.m.s. error of an observed direction, using, instead of the strict
formula (1), the approximate, much simpler Ferrero’s formuta (e.g. [7]
p.132, [ 11 p.257, [ 11] p.11) where the computation had been done on the
basis of misclosures f alone, without matrix Q.

0f course, to solve the proposed problem using the formula (1),
one doesn’t really have to compute the matrix Q=1. It is possible to cal-
culate ftQ“1f at once, by transforming into triangular form the matrix,
which is obtained from Q by adding f' as the Tast row, f as the last
column, and a zero at the (n+1,ﬁ+1)-position. As a result of reduction, the
value of ftQ™'f appears at the position (n+1,n+1). The reduction itself can
be carried out‘by some of the known methods. Our choice was the Cholesky
method, adapted for the later described storage scheme for the elements of

The decision was made to solve the problem by using a small desk-
top computer HP 9845A, the only computer existing at the Geodetic faculty
in Zagreb, Namely, the matrix A has been composed by a human being, not
by some machine. Thus it was to assume (which was confirmed Tater) that
it would be necessary to correct data repeatedly, of course, using the
computer (together with the knowledge of the matrix A special properties)
also for the diagnosis of errors. Hence, it seemed more rational (and
more interesting) to deal with the problem of handling a greater quantity
of data by means of a little computer, which was at hand at every moment,
than with frequent visits to some mightier computing system situated
in some other institution. Besides, one can imagine that in some future
investigations even bigger matrices may appear and the appropriate big
computer need not be always at hand, even need not exist at all. Hence,
we believe generally that it makes sense to try to exploit every particu-
lar computer” as efficiently as possible.
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Operating with the original matrix A was made easier by its very
;pecial form. Its dimension was up to 666x180, but each column contained
mly 6 nonzero elements, each of them being either +1 or -1,

-2 =10 135 -6 =26 iiieesen

4 13 162 8 28 aiiiieees

9 91 -148 128 =172 ...eiea.
=13 -97  -165 29 174 oeeene.
107 =107 -662 =170 =190  .........
-118 110 666 172 193 el

Fig. 1 Storing the matrix A

Thus it was possible to accomodate that matrix into an array not
greater than 6x180. Fig. 1 presentsa part of that array for the case n=180.
E.g. from the third column of that printout one can read that the third
column of matrix A contains:

+1 in 135th, 162th and 666th rows,
-1 in 148th, 165th and 662th rows,
0 in all remaining rows.

The computation of individual elements of the matrix Q=AtA from
the elements of the mentioned array presents no considerable problem.
The problem is how to store them (suitably for further treatment), be-
cause the structure of Q is much more irregular than the structure of A.
The number of nonzero elements is not constant but varies from column to
column. Also, it cannot be predicted in advance.

We tried out the well-known column by column storage scheme for
symmetric matrices - only from thé first nonzero element in the column
to the diagonal (see [6], as well as Fig.2), When doing so, the profile
of the matrix (the quantity of ele-
ments to be stored, and to be operat-

o|oiojo]0 0(0]j0
0 0 0j0(0 P
ol o ToTo ed on subsequently) reduces essential
0]2]o0 ’/4Yj%0 0o ly, but still insufficiently for our
0[0]2j2 0j/0}0
ol2l 200 Odg o computer,
2]-21012]0|2 0 The known methods for acting in
olofolcloloj 2P0 . I
olofolojol2]o]2 such cases, e.g. column interchanges
olojojololo]o]ol2 (with simultaneous interchanges of cor-
Fig.2 Profile of matrix Q responding rows) for the symmetric ma-
{hatched)

trix Q in order to reduce the profile



here are a lot of papers dealing with that, let us mention at Teast [3],
[4],05],08]1,09].101) were out of question. Namely, one would have to use
a considerable part of central memory to accomodate the program. Thus,
there would be a lot of 1/0 operations in the course of rearranging the
matrix Q (which was too large for the central memory). The computer in
question uses a tape cartridge as mass storage medium, hence the procedure
would progress rather slowly.

Having all that in mind, we concluded that it would be more favorable
first to rearrange the matrix A appropriately, and only then to form Q=AtA.
The algorithm should be as simple as possibie and the computer program short,
so that almost everything could happen inside the central unit.

As normal equations (with the matrix of the form Q=AtA) appear fre-
quently in technology and in applied sciences, frequently exactly such
whose matrix contains a lot of zeroes {e.g. in geodesy it is the consequence
of the properties of geodetic nets, compare e.g. [8]), we consider that
the approach proposed in the preceeding paragraph makes much sense. Regard-
ing the realisation of that approach, one could probably also find other
solutions, perhaps more elegant or better then ours, which is in its turn

very simple and turned out well on examples.

The idea was to rearrange the matrix Q to look as "diagonal" as
possible. Namely, as easily seen from Fig.3c. and 3d., the elements qy; of
the matrix Q i-th column are zero for 1<j and for ™k, i.e. with A becom-
ing "more diagonal", Q also becomes such and its profile reduces.

e

A
ATTTTT

AT

JASRERS
11T
33T

1111
JNNES
INBERI

et

Fig.3 a. the original matrix A
b. A after completition of the first step (row interchanges)
c. A after second step (column interchanges)
d. i-th column of the matrix Q formed from rearranged A (c.)

(Blackened areas contain nonzero elements)

The "pushing" of the matrix A nonzero elements towards diagonal was
realized in two steps. The first step represents the "compression" of each
individual column. It started by putting six rows which contain nonzeros
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in the first column to first six rows. Then, the columns which have non-
zero element in the first row were found one by one, and the rows contain-
ing remaining nonzeros of the column in question arranged in sequence
following the rows already arranged up to then (the row which once exchang-
ed place with some preceeding row remains there till the end of procedure,
a once.processed column is considered never again). After that followed

the search for not yet considered columns having nonzeros in the second
column etc, The procedure was completed when there remained no untreated
column. In this way the matrix A was transformed from the form in Fig.3a.
to the one in Fig.3b.

The second step consisted in column interchanges in order to change
the situation in Fig.3b. to the one in Fig.3c. It was carried out by ar-
ranging the columns in a sequence using as a criterion the last nonzero
element in each row (the first nonzero would do equally well, one could
also use both of them): columns having nonzeros in the last row became
last columns and so on.

number of upper trian.
elements of the| share |diagonals ratio
upper triangle of with nonzer.| profile of
n total |nonzero ([nonzeros |orig. |rearr.|orig. | rearr.|profiles
19 190 56 29% 18 9 123 110 1.12

162 11628 561 4.8% 145 24 5170 2200 2.35
162 13203 755 5.7% 160 35 6269 2725 2.30
173 15051 773 5.1% 174 34 6863 2745 2.50
180 16290 631 3.9% 173 24 6852 2324 2,95

Table 1

From the matrix A rearranged in this manner, the matrix Q was form-
ed having a smaller prof11e‘than when formed from the original matrix A.
As easily seen from the Table 1,'the‘considered examples showed a signifi-
cant decrease not only of the profile but also of the bandwidth. Hence, it
was also possible to carry out the reduction to triangle in another way
-~ to use some algorithm for banded matrices.

For the time being one can‘ho]d that the efficiency of the proce-

dure increases when the format of the matrix Q and the share of zeros in

it increase,

Finally, the question emerges: Is rearranging the matrix A before
forming Q worth the trouble only in such very special cases when matrix A
has the structure described above? We are not of that opinion, Namely,
if A had approximately the same share of nonzero elements as in our examp-
les, but the elements were disposed in an irregular pattern and assuming



... heterogenous values, A would fit into an arfay'of something more
than twofold magnitude, which would be still bearable, In that case e.qg.
for n=180, in place of an 6x180-array, one would need approximately
13x180 of storage space. Table 1 shows that it would be still less even
than the profile of the matrix Q formed from the rearranged A.
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APPROXIMATION OF 2m - PERIODIC FUNCTIONS BY FUCTIONS OF SHORTER PERIOD

Slobodan D, Miloradovi¢
ABSTRALT:

In this paper we give the value of the emact approximation, for a fized,
2n = pertiodic function by funotions of period 2n/k where kK is a natural
mumber larger than 1. We determine also the exact approximation of a fixed
on = periodic fuction by furiktions of period 2wm/k, where m and k are two
mitually prime integers, Them the equality of both approximations is pro-
ved. 4n example which illustrates these results is given at the end.

1PROKSIMACIJE 2w —~ PERTODICNIH FUNKCIJA FUNKCIJAMA KRACE PERIODE. U vadu
se daje vrednost tadne aproksimactije, fiksirane, 2n - periodidne funkcide
Funkeijoma perioda 2Tl'/k gde je k privodan broj vedi od 1. Takodje se utvr-—
ljuje tadna aproksimactja, fiksivane, 2w = periodidke funkcije funkeidama
perioda 2wm/k, gde su m < k privodni, usajommo prosti, brojevi. Zatim se
dokazuje jednakost jedne i druge aproksimacije. Na kraju se dage primer
koji lustruje navedéne rezultate.

Let C{a,b], as usaul be the space of real continuous functions f
defined on the interval [a,b] with norm
g fa,b] = xe"f:),(b]'f(x)l’
and let C denote the space of periodic, real and continuous functions f
defined on the real line (==, 4=}, whose period is 27 multiplied by a ra-
tional number, with norm

= max!f
1911 = x| ()

The set of all periods of a functions f is denoted by Q¢. For exam-
ple, if f is a 2w - periodic function, we shall write 2nef ¢

In this paper weshall find the value of the exact approximation of
a Tixed 2r - periodical function f, by a functions ¥ of period Zwm/k, vhe-
re m and k are two mutually prime integers, that is, we shall find the
value of

inf ||f -wi[c.
Y ,2wm/keszw
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Let us mention that, if two functions have different periods, in
order to find their distance in the metric C it is enough to find their
distance on the smallest inteval in which the periods of the functions
are contained a whole number of times, Thus for example, if 2me Qg and

an/k € Q@ then we have

[If - ¢l|c = ||f - Wllc[ogzﬂm}'
Lemma 1. Let fe C, 2ﬂe9f and
218

?k(x) = max f(x + 2%3) jk(x) = min  f(x + —E—) k, seN, k»2.
O<s<k=1 O<s<k=1 .

Then ?k and f, are continuous and-%?esz¥4 and 2n/keﬂf .

Proof. The fact that f is continuous is equivalent to the fact
that for every >0 there is an §(e) >0 such that

M
According to equality

xTex"| < s(e)=[F(x) - F(x")] <€

(2) 1+ By e S = x -k
from (1) and (2) it follws that |x” - x"| < &(e) implies

[F(x" + 2%5) - f(x" 2“5 )] <es (Osssk=1),

that is
ce b PO+ B0 <r(xt + B <f(x" + B 4 e (Ocsek-1),
hence
~e + max  f(x" + g}Z—E)< max f(x~ + Z%§)< max F(x" +2“5)+s,
O<s<k~1 Oss<k-1 O<ssk-1
that is
F (ke F oo o . 2ns, _ w , 2mS
i (x7) - F(x ) =] max f(x" + o) - max (x4 —E—)|<e,
O<s<k-1 O<s<k-1

which means that ?k is continuous, Accordingly it is proved in the same way
that f, is continuous, Since 2meqc, it follows that

Filx + %?) = max f(x + 7{ + 2%3) = max f(x +2"ks+1) = max f(x+g%§}
O<s<k-1 Oss<k-1 O<s<k-1
that is ZW/KSQ? . Similarly, Zw/keQ
k L
Theorem 2, If feC, 2rcQ., d ~5—2¥:B then
(3) inf |If - vl 1=ild ]
v.2u/ 69, ¢[0,2x) k''c[o,2n/,].
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Proof. According to lemma 1 the functions

?k‘-’—f—k Ftf
d == and gy = —7—
ore from C and 2n/ ey, Zw[keﬁwk. Since for x € [0,2n]

F(x) = 9 (x) s Fix) =y (x) = d (x),
) = (%) > B (x) =gy (x) = -dy (%),

then
1F(x) = v ()| < dp (%)
and
(4) LIF - wkilC[O,Zw]<I]dkllC[O,Zﬂ/k]'
Since dy is continuous on the closed interval, then there is x ¢ [0, —Z-kl]

such that d (x;) = l[dkll. For any function veC, 2n/ke9w , We have

27S
f=vlls > Max F(x, + =) = w(x_ + 2us/ =
[l !IC[OQZW] >0ss<k-1 [Flxg + 500 = vlxg “< K|
27s
= max - |F(x, + =) = v(x,)] =
Oesck-1  © K ol
= max  (max((f(x, * 2ws/}) - w(xo), w(xo) -f(x0 + 2%5)))=
Q<s<k-1
2ws . 27s
=max ( max F(x. +52) - v(x ), ¥(x) - min f(x,6 +=5=))=
0gs<k-1 0 K 0 0 O<s<k=1 o k

"

max (Fk(xo) " bxg)s ¥lXg) = £ (%)) 5 dylxg) =]|dk||C[O,%g]
that is

6) 1= #lgoep ol
c[0,5]

From (4) and (5) we get (3). Theorem 2, in the form of a lemma was proved

and used in [1] for determining the exact upper limit of Fourier coeffi-
cients on class H[s]1 in the space L of integrable functions.

Corollary 3. If feC, 2reqe M = max f(x), m = min f(x), then
- X X
(6) inf [|f-wj] < B0,
v
\L""k_eﬂlp

We have equality in (6) for such function f for which there is a
point x, in which M ='?k(xo)-and m = f(x,).



Corollary 4, If fe(C, 2ne¢ Qps then

. M~
e An £ {1F - g 0y =2
kseo q’,z—'ﬂeﬂw

The sequence (  in f {|f - ¥||¢ 1o 2“]): ) is in general not monoto-
VET ¢ Qy
ne, which is evident from an example given at the end of this paper, It
would be of interest to describe the class of functions feC, 2re Qs for
which the upper set would be monotone.
If a fixed function fe €, 2me 0, 1s approximated with functions
Ve C, an/ke Qy where m and k are mutually prime numbers,then by putting

%k(x) = max f(x + ZT?S)’ fix) = min f(x + ZEms)9
O<s<k-1 O<s<k~1

* = ,
dk —
and using Temma 1, we prove, in a similar way like theorem 2.
Theorem 5. If fe C, 2ne Qs them

in £ 1 = ¥ero, pmy = MK

(1) v, Sleay ¢fo, £
: 27 . 2mn
Since from T € Qw it follows that ¢ nw then
{¥: _'GQU)}C{'J) 2ﬂm69 }s

and for feC, Zweaf,

(8) cin fO||f - v, > dinf |1F - yl|
ﬁeg C,[O,Z'ﬂ} 2—’"“1 e i C[O,ZWm]
4)9 k \b 11) k ‘l)

It could be expected that strict that strict inequality is not
excluded in (8). We sholl prove, howerer, that both sides of inequality
(8) are always equal we shall need.

Lemma 6. Let m and k be mytually prime numbers, By dividing all
terms of sequence

(9) ms 2m, ... , (k-1)m
by k, we obtain the sequence of remainders

(10) FPs Too wee Pyy



77

Then (10) is a permutation of the sequence

(H) 1’23 1ty k-1,

Proof, It is clear that by dividing by k any term from set (9) we
get a remainder which is smaller than k, as well as that the number of
terms of (10) is k=1. Accordingly, to prove that the sequence (10) is a
permutation of the sequence (11) is enough to prove that there are not
equal terms between the terms of (10). Let us suppose the opposite,that
is that among terms of set (10) there are two terms Tm and nm, l<n<k-1,
which when divided by k give the same remainder;

Tm = kp + "
nm = kg + rn, p, ge Nu {0}, rn-<k, rp€ N.
By substracting the first equality from the second equality we get
(n-T)m = k(g-p).
Hence, considering the fact that numbers m and k are mutually it follows
that the number n-1 is divisible by k, and that does not agree with ine-
quality 0 <n -1<k,

Theorem 7. If feC, 2ne Qs and m and k are mutually prime numbers,
then it follws that

12 in f [ = = in f f - .
( ) 12 || ‘pHC[O,Zw] ézm H U’”C[O,Zwm]

m

Ve ey Tk
Proof. Due to lemma 6 m.s = gs-k-rrss 94 € Nu {0}, where (rs)z;l is
a permutation of sequence (11), and having in view that 2re p ve get
. . 2wr
2mms s 27s
f (x) = max f(x+=7—) = max f(x+2rg_ + ) = max f(x +r )=
k O<s<k-1 k Ogs<k=1 s O<s<k-1 k
= Fi(x). ,
Also T (x) = f (x) and ZE-EQ- , §3~en . According to that we have
21/, e Qd,Iz and for every xe|[0, gfi dk(x) = df(x), that is
(13) Hdl| = gt :
K efo,2]] “clo, Zmy

From (3), (7) and (13) we get (12).

If mxk then we get 2“m/k > om, so that Theorem 5gives a result about
approximation of a function fe C, 2ne 2> by functions whose period is lar-
ger than 2w, also. But theorem 7 confirms that approximation of 2w - perio-
dic function whose periods are larger than 2v are equal with approximations



of functions whose periods are smaller than 27 which is in accord with
the titie of thos paper.

Example 8, Let f(x) = cosx. Then we have

1, n=2s, seN

(14) 1“ foollf- ¢l|c[0,2“] = {

T[ -
‘P’Te% cosz—k,k—ZsH,seN.

Proof. Let k = 2s, se N, Since f(x) = cosx it follows that

{ cosx, xe[0, —2%]

fk(X) =
cos (x + &1 ), xe [, 1],
‘ cos (x + m), Xe [0, -2"—5]
i (x) =
k -1
cos (X+ST ﬂ), Xﬁ['z%s %]9
4 () Ilcosx, xe [0, 23]
A U U
Ccos (X"'—s')a Xe [‘2‘§ 9_5_]’
and lldkll = 1, According to theorem 2 we get the first part of
2r
c[o, T]

equality (14). If k = 2s+1.Thenwe get

7 { cosx, xe[0, werr]
= drs 27 1
cos (x + 75t)s X e ggpy » 25+1j

2 2
fi (x) = cos (x + —ZlgjsrT), xel0, Tif]’
. mSs L ki
sin (x + 757) €08 3y » ¥ &[0s 7yl
dk(x) = i )
. TLS= . v
sin (x + T2 cos gty s xe [y » 53
and ||d|] ” = €oS 7(2“?1—) , which proves the other part of equa-
€0, eyql
Tity (14)
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ON THE STRONG SUMMABILITY (C,«) OF TRANSFORMATTONS
OF SIMPLE AND MULTIPLE TRIGONOMETRIC FOURIER SERITES

Vladimir N. Savié

\BSTRACT:

vhile working on the above subject I found inequalities followed
»y a number of results on the strong summability(C,o()) of
sransformations of simple and multiple trigonometric Fourier
series.

) JAKOJ SUMABILNOSTI (C,() TRANSFORMACIJA PROSTIH I VISE-
STRUKIH TRIGONOMETRIJSKIH FURTIJEOVIH REDOVA.U radu su dokagzane
nejednakosti iz kojih sleduje niz rezultata o Jakojsumabilnosti
(C,o(,)transformacija progtih i viSestrukih trigonometrijskih
Furijeovih redova.

Definition 1. ILet e LLET,JCT,
<)

(1) %: + ”"\": Ol CATS 1 D4 «(7;,; AL KX
KA

Fourier series of g, y /5%(%,:;&) the sequence of its partial summs,
o[>0, Y. natural number or zero,

A= ("),
g

L R R S A N e
(2) éj(ac,ﬁ#;% ;}A'n-r$?é ; (%,4) = f{c 5L.&(cv;kﬁ)ﬂﬁ.(%%ﬂKf(ﬁ)7;/_;16
= Yo,

(C,)transformation of the series(1),T=(, Jregular matrix
and P>Q.If )

S P PO ;
L Lt il e )- i )=0

we say that series (1) (H,p,T,) (or strongis summabil in point 2¢
towards 4(«) .In addition to the abovestated,if Le&€[ZT, K] and

Lim. l}é Q%yw , é:(’t,gl)*'g‘(’x)\r' ‘{:O

N> 0O

we say that series (1)(H,p,T,£)(or strong) is summabil wniformly
at %, %I towards the f function.
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Theorem 1. Let Le]-X %{ and ”g.‘lq 11, then for each
}3)0, i 2 and c[>0

y s
K1 2 | & (':1‘.?&){ = ((io"‘{” \
where C\}/\,m) is a p051t1ve constant depending only on p and 4,

Proof.It is sufficient to examine the case 0<ol<A From (2),
putting it as
é‘}' (o, 4 «ﬁl(‘f'{ g )

and from . , o o 7 = (L)
(IR lKMt)'HAM)%”H&. ‘
for ) 192,5.,., .3 0 <t <TC there f’ollows

(3) g <M } : d ‘<A . M .

where A(O(,) Al (o(,) are the pOSlthe constants depending only on

From inequality ) _— . \
ER L «a"?*”(’l@l' 16 (1) (va,,,.(,«g}k)(\{;wa)
and (3) there follows

ek W= 27 (27 A ) M,

[}

E‘Z*:’T N

Theoren 2 TLet %,-L{J&k]then for each 5(;‘ K A 4 e

o, & v
Z | &30, §)=Jeal Ty < Gyt >* LE, )
= K« ﬂg\—
where /., is any non-negative,not-increasing numbers E,b(’:{,\
the best approximation of the f function to the trlgonometrlc
polynomlals of the degree&\iin distanceof the space ( -\ 1(1
CA(Y‘7 ) a positive constant depending only on P &.IILL,(

Proof.According to Theorem 1 there follows

Vu—d

-3
5 e Jeoltey= 2 > e -t
: =2 K-==—4
w ,,og) ngﬁ TEyn_ <«§]Jﬂ\ 5
=1

2.,/’!(»- 2

- 9] L g’i e 6]
<2 ent)) 2 TESAI=C tp ) ZLEI L

=4 pe)PA 4
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perinition 2. Let Fod O any sequence and C, collection of
the function &QQE—M"J{“] for which E., (&)< Fa .

Theorem 3. Let /&,E C’F and T=(Olmk) a non-negative regular
‘matrix the elements of which satisfy the condition

a”n,kw < @,k (V’”' =0, ’/929””)

\ Then,tlalgre exists the sequence »(’YL){‘+ o0 such that
Lim J % c ‘é;(’/ e ({‘) %‘(r)(,)v)(m) P .
oo 1L L5 a1 O Hry /= ) j = C .

Theorem is proved as in (2). C

Theorem 4.If %éc and G{Q is any sequence of non-negative,
not increasing numbers,then for earrhyb>0,K"f,v’( and of O the fol-
lowing inequality is correct:

2 INA &2 o, ‘e i A P /
Ot <RI lgeieltles
= C4 (Y’?’(’) L ’ifow‘{'&

Ve W
Proof.The right hand inequality results from Theorem 2.

et o
i %‘O(OC“) gZ._ ( Fvn-_:(_ F%)C@j NG,
M=o
Then '
1.0)-65(0,40)=Fy, 4 Cp
and

PALCESERSION P92

by which Theorem 4 is proved.

From inequality (4),it results that the approximation
rate to the strong means, (C,l ) (elzO)transformations of
trigonometric Fourier series’ of the function%(()(for the whole
Cp collection) cannot be improved. F

Similarly,we testify and prove the theorems relating
to (C, L) ({>0) transformations of multiple trigonometric
Fourier series. :
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N ESTIMATION FOR REMAINDER OF ANALYTICAL FUNCTION IN
TAYIOR’S SERIES

etar M. Vagié, Igor %. Milovanovié and Josgip E. Pedarié

BSTRACT ¢

n this paper some estimations of difference modul of analy—
ical functions and referred Taylor’s polynomials are given.
he obtained results are illustrated on a certain concrete

f cases, i.e. on exponential, ginhyperbolic and cosinhyper-
olic function.

OCENI OSTATKA ANALITICKE FUNKCIJE U TAYLOROVOM RAZVOJU. U
ovom radu date su neke ocene modula razlika analitidékih fun-
keija i odgovarajuéih Taylorov1h polinoma., Dobijene ocene su
ilustrovane na konkretnim slucajevima, tj. na eksponencijal-
noj, sinushiperbolicnoj i cosinushiperboliénoj funkeiji,

We shall prove first a more general result for analy-
tical functionsg:

THEOREM 1. Let zv £(z) be an analytical function in the
circle |z|< R. Let functions zv» [ k)(z), keN,, map real axis
in real axis. If a natural number r exist, 1<r<n, so that

(n+k) (r+k)
01 (0) < £ (O), ke N, the inequality

(1) L= | £(z)- 1 f(k)(olzki 1( 2 £(2)- ;ﬁf.lf_).&.(llu{k)
(r+1)1 k=0 kI \(n+l)! k=0 k!

holds.
Proof., Assume that all conditions given in theorem 1
are fullfiled. Then

1£(z) - ?_92&9), 2X| o .._(.ESQ.Zk[;Ew (k)OH
k=0 k-n+l k! k=n+l
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L2l La T )y, LalTE p(ae2) gy, Ly
(nel)eoo(x+2)  (x+1)1 (r+2)1

A

2] 27 La (e gy, 2T pe2) g, L)
(n4+1l)eoo(2+2) (2+1) (p+2)1

fia

Nep r (k)
- | 2| (£(lz|) - ¢ £2200) 50k y,
(n+l)eoo(r+2) k=0 ki
wherefrom the inequality (1) is obtained.
In the similar way the following theorem can be proved.

THEOREM 2., Let z+£(z) and z- g(z) be analytical fun
ctions in the circle |z] <R. Let functions zwf k (z) and
Zk+g(k)(z), k eNo, map real axis in real axis. If a natural
number r exist, 1 <r <n, so that Og_f(n+k)(0) g(r+k)(0),
ke N, then the inequality

iIn

| 1
(2) ];EJE | £(z)= Izl.fﬁiﬁ?.l 2K < L2 o+ (B(IZI)- J; () (o .
Lr+l)l (el 2 (0)

k=0 ki k=0 k!

holds,
On the basis of inequalities (1) and (2) we shall gi-
ve some approximations for concrete analytical functions{
If we put f£(z) = ez, then f(k)(o) =1, keN,, on the

basis of the inequality (1) we obtain

3y LelTeal S o L™kl § B,
(r+1)! k=0 k! (n+1)1 k=0 ki

The inequality (3) (see [1] ) is a generalization of
Garnir’s inequality (see for example [ 2,p.323 ] )

n o+l
% (e By renns 2 ¢ L2l o2,
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If we put that

7 z2n--1
T2na1<z) =% 4 FT + ese + OATYT ? ﬂml(z) = 0,
and
2n—
1‘2n_2(z) = 1 + 'ET + coo + -('2——-2-)- ’ T-Z(Z) =0,

then for f£(z)

shz and f£(2z) = ch % we obtain inequali-

ties
|shz - Ty 1(z)|c $2B52MAL |42 (apg) =m0 ()
and

2n=2m } [zi2m(ch|2| - T2n—2m—2(l 7))

[chz = Ten_g(zﬂ <
for m=ly.0s40, respectively,
In the same way on the basis of tne inequality (2)
we obtain inequalities
2n=2m) !, ) 2m+l
+ .ld

|Sh 3 = Tanl(Z)I S (Chlzl‘“ TanEm-n2(lZD)

lch 2 = TEn—2<z)|é= 2n—§mfl ”z@mul(sh}mezn_am_l(ld))

i'OI‘ m = 0 l,.eo,n °
On the basis of P.R. Beesack s remark (see [2] ) we
shall prove the following result:

THEOREM 3.If 2z is the complex number,lzlg/(2n+2)(2n+3}
then the inequality

(2n+2)(2n+3) |5} 2n+1
(2n+1)!  (2n+2)(2n+3)-] ¢

|sh z - T2n=1(2)|é

holds,



W

Proof. As

2n+1 2
|sh z - Tan_l(z)I; 2 = !(l + nlzl STEY t ocee )
2n+l 2 4
< 2l 72 1+ 2] + |z£ =5+ eeo)
(2n+1)! (2n+2)(2n+3)  (2n+2)“(2n+3)

_ 12 (ons2)(2n+3)
(2n+1)! (2n+2)(2n+3) = IZ!2

the wanted inequality is obtained., _
In the similar way the following result is obtained:
THEOREM %4, If z is the complex number, |z|< /(2n+1)(2n+2)
then the inequality

(2n+1)(2n4+2) |2 |%®

(2n)f (2n+1.)(2n+2) n<;2

|chg= T, o(8)] <
holds.
REFERENGES
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ON A METHOD OF NUMERICAL DIFFERENTATION

Bogdan M. Damnjanovié

ABSTRACT:

A method for numerical differentation of a function assigned
tabelarly is described in the paper. The orthogonal system
=l -1 . -1 Y ‘
T coSX, T sinx, = cosx, 7w  sSin2x,...

is used.

O METODU ZA NUMERICKO DIFERENCIRANJE. U radu
je opisan metod numeritkog diferenciranja fuhkcije zadate tabe-
larno. KoriSéen je ortogonalan sistem

-1 -1 =1 -1 _,
T Tecosx, W sinx, W cosRx, T SinZ2Xjye00 o

Let f(xl),f(xz),..,,,f(xn) be the function values, found

by a measuring for a series of real arguments LT L YRRRTE S

Denote the most convenient empirical formula concerning £ by

f For the function f we assume that:

3
7 1% it is defined over [-mw, 7],
2° it has continuous derivatives £’ and f" on [=msm] s
3°  the following inequalities are true
7 2 .
(1) f(f"(x’)) dx <«
-
1
(2) ||f—fﬁ||=(f"[f(x)-f3(X)]2dx) /2;3,
=T

where B8 >0 is assigned.
On the basis of the known function fB’ the construction
of a polynomial P I?)(‘x) ‘which approximates evenly the function
. o .
£f(x) over (-w,m), is presented in this paper. This procedure

is as follows:
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The known function fﬁ is approximated by a polynomial

o qn+1(x) of degree n+l, such one that the inequality

(3) “ffs = Ay || 58
holds. The polynomial 41 is obtained developing fB by Fourier’

series using the orthogonal system

(+) ﬂ’lcosx, Tr-lsinx, v—lcOSZx, 71 sin 2x s e
namely,
1 n+i
(&) qn+1(x) = = kzl (akcos‘kx + bksinkx),
where
T ) 11
(5) a, = _{fﬂ(x) coskx dx, by =:ﬂ/f3(x) sin kx dx,

and n is chosen so that (3) is valid.
According to (2) and (3) it follows
(6) NE=a q 1l £ IIf=E501+ 5 = a 44/l 228,
If the function f’is marked by f’(x) =uo(x), then under

the condition (1) uo(x) is the unique solution of the integral

equation

x
{(7) fu(t)dt = f(x).

Let {7) be written in the operator form

(8) Au = f,
Introducing the functionalls
2
(9) I I:u:qn+1] = ”Au- qn+1”
and
_ R
(10) K[u] —”u” 9

the approximaﬁe solution of the equation (7) (i.e. (8)) can be

found by minimizing the functional K[u] under the condition
2
(11) I[u,qn+1] 2 48

(according to (6)}). Denote a such minimum by uB(x). Then, it
is easy to prove that

2
(12) I [uB,qn+1] = 48°,



89

In the following, we will show that ug(x) is the required

pinimum if the condition
1

13) 8 < zlla 4l
is satisfied.

Let

Au = v

be Fourier’s development of v using the orthogonal system (*),

namely
vix) ~ %— ] (e, coskx #+ d, sinkx).
k=1
Since ulx) = vi(x), u(x) = v"(x), it follows
(14) ul x) m%kzl [e) (=k sinkx) + d, k cos kx] ,
and L e 2
u (x) v == k“{ec, coskx + d, sinkx),
where
2 ki3
e, =~k -ﬂfu (x) cos kxdx,
-2 F
dk = -k :ﬁ/u (x) sin kx dx.

Now, we have
K[u] = /[u (x)] dx = /[.,...,,, Z K° . cos kx +dy Sinkx):ladx

a ®)

1 cf L 2
== k" (c
mbs ke T

and

m m 2 m 2
I[u,qn+1] =fl_—fu(x)dx=qn+1(x)} dx=f[v(x)-=qn+1(x)] dx

I 1 1 n+1
=/[ kz (ckcoskx+dksmkx) - Z (a coskx+bksmkx):l
-

n+l
-1 ;[(ck-—a) + (dy ~by) ] (e, 7 +a.F).
T k=1 n+2
The coefficients Sk and dk are defined by looking for the
minimum of the functional K[u] under the condition I[u,qn+1] I+B
using the method of regulation:



' 2
ofu,q ,4] = K[u] * nI(u,d,4q] s Ilu,a.,q] = 487,

1
If we put A = =70, then @[u,qn+l] becomes

1n+1 2 2

*lwdgegd = 7 1 Dlep=2)" 7 (4 =B )]
& 2 2 R P 2
+ ) (e, +b ) +2 T ke T +b.)
k=n+z K K Tr=1 kK

1
1 2 2 2 ook R, 2
= ;kz=1[(ck -8, %) +(d, ~b )+ 2k (c " + b, )]
Sl Ak, 2 R
+ ) (= + 2K Je " +a. ).
k=n+2

Since the second sum is nonnegative, for the minimum is supposec

that ck—> 0 and dk +0 for k >n+2., Then, according to

3
—5%-m=o and %%m=o,
k Kk
we fTind
na. mh
Kk Kk
(15) Cp = r— d, = ——,
N ko gk

On the basis of (14) we obtain
1 n+l a) cos kx + bk sin kx

ki 9

(16) u,(x) = )
B k=1 14 AR*

where ) is determined from

2 _ 2
(17) lug = appqll™ =487,
that is
1 =2
12 28 2 2 woF 2
(18) = ) N kT(a” + b O)(1+akY) = u8".

The left-hand side of (18) is monotonically increasing fun-
ction of X which tends to

n+i
1 2+b

2
"oy e )

when A + », Besides, 8 0 if A+ 0 so that
1 n+l

2
(a
" k=Zl k

(19) FepP) s us?,



faarwm -

imum of @[u,qn_HJ if (13) is valid.

From we immediately (13). Therefore, uB(x) will be mi=

It is easy to prove that uB(x) is minimum of ¢ [u,qn+1:|

tor each x €(-7,7) and lim uﬁ(x) = uo(x) = f"(x) evenly on
B8 +0
(=77}
According to the above, the polynomial P B(x) has the
9
form )
1 n+l a, cos kx + bk sin kx
Pn B(x) - Z L ?
’ T k=1 1+ Ak

where a , bk and * are defined by (5) and (18).
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ON AN APPLICATION OF HERMITE'S INTERPOLATION POLYNOMIAL
AND SOME RELATED RESULTS

GRADIMIR V. MILOVANOVIG AND JOSIP E. PECARIC

ABSTRACT:

In this paper we gave generalizations and improvements of integral ine-
qualities from (11 and (21, In the proof we used the well-known re-
sult for the error of Hermite’s interpolation polynomial. Some similar

results are also given.

0 JEDNOJ PRIMENI HERMITEOVOG INTERPOLACIONOG POLINOMA I NEKIM
SRODNIM REZULTATIMA, U radu su date generalizacije i poboljdanja in—
tegralnih nejednakosti <z [11 ¢ [21. U dokazu je koridden poznati rez-
ultat za gresku Hermiteovog interpolacionog polinoma. Neki slidni reaul-
tati su takodje dati.

1. INTRODUCTION

In the Journal Amer, Math. Monthly the following two
problems ([1],[2]) are posed:

1° Suppose f£(x) has a continuous (2m/)-th derivative
on ad x% b, that lf(zm)(x),élw, and that f(r)(a)e f(r)(b)
= 0 for r=0,1,00.4ym~1s Show that |

< } (m! )2M_ (b—a)2m+l

(1)
(2m)t (Pm+1)!

b
Sf(x)dx
a

2° Iet £:[a,b] 2R be a continuous function which is

twice differentiable in (a,b) and satisfies f(a)= £(b) =0,

Prove that
b
. A
(2) Sle(elax € X M(b-a)?,
a 12

where M= suplf”(x)llfor xe&(a,b).
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The solution of first problem is given in [5].

The inequalities (1) and (2) are,related to IYENGAR ‘s
inequality [%, pp. 297-298]%).

In this paper we shall prove some inequalities which
generalize (1) and (2) in many senses.,

Let us define the two-parameter clas of polynomials

Pém’k) (0Ofmfk<ng mk,n €N) by means of

(M) (y) = (0% (50,0) =

X
= Cgm"k)(aab) (Xua)m é(x_a)k“m(x_b)n—k-ldx

where a and b are real parametars and

Cgm’k)(a,b) = (Ql)nmk(n'm)g (b-a)t™ 1,
n! (k-m)! (n-k-1)!

For this polynomials the following relations hold:

i
Q—TPgm’k)(x) =& (i=0,1,..0,k; &, is the CRONECKER
d% x=8 : symbol),
i _
Q;ngm’k)(x) =0 (i=0,1,e00,n-k-1),
dx x=b

( ( ) Je—m i

mek) _ myk b—-a,)"  k-m m =11
P () = 6{M¥) (a,b) 2_; o-8) (kM) (-8)"(5-b)

b
SPém’k)(x)dx _ (n-my! k+1)(b—a)m+1,

n—m)!(
a (n+1)! m+1
If the values of derivatives of funetion £ in x=a and

x=b are known, using polynomials fém,k)’ HERMITE’s interpo-

lation polynomial can be represented in the following form:

k-1
8, k(%) = ZE;Pgﬁik'l’(x;a,b)f(m)(a) +
n= n—k-1
w2 pmn=lel) o o) e(m) ()
m=0

1) On some generalizafions IYENGAR®s inequality see [5—7],



-~ MAIN RESULT

We use the following notation

b
Spx) Je(x) | Fax b

™ (£5p) = | 2 B »  8(x)= T(x) =8, ().

Sp(x)dx
&

THEOREM 1. Tet x=f(x) ne a n-times differentiable funciion
such that If(n)(x)l M (¥x€(a,b)). If xsp(x) is an inte-
rrable function on (a,b) such that

O<c = p(x) & He (AE 1, x¢ [a,b]),

she following inequality

1/r .
(r>0)

n
3) MLt (gyp) & MO(o2)(  AB(wksl,r(nck)sl)
Ct+(A-1)B(rk+1,2(n-k)+1)

unolds, where B is beta function and C = kk(n»k)n“k/nn,

Proof. Since |f(n)(x)| & M, the inequality
\f(x) - Sn,k(X)‘ & %%l(x—a)k(xmb)n“k‘

is valid, wherefrom (for = >0)

1/x
Sp(x)(Xma)rk(bmx)r(n”k)dx
(u) ut (gip) = J1| 2 .
?p(X)dx
- & ‘
According to J. KARAMATA’s inequality [8] (see also [5]) we
have
b .
Sp(x)(x»a)rk(b-X)r(n“k)dx Mip
8 5 4
N+ (h-1)
Sp(x)dx ( F
&
where

- ‘
N = C¥(b-s) and fxg(b—a)an(rk+l,r(nak)+1),

-~ which combined with (4) gives (3).
From Theorem 1, we directly get the following result:s

95



(7]

COROLLARY 1. Let xt» f(x) be a n-times differentiable functi-
on such that If(n)(x)l £ M (¥xe(a,b)) and let f<i)(a)==o
(1=0,1,000,k-1) and £3/(b)=0 (i=0,1,000,n-k-1). Then

b 1/v
0
) (55 5|f(x>|rdx) € Mbeo) plricit, w(n-1+1)% (230,
a !
For n=2my, k=m, r=1, inequality (5, reduces to
' b
&) 1) fax € M=) Tt )
a (2m)r(2m+1 )}

which generalize (2), and which is evidently stronger than
the inequality (1).

COROLLARY 2. Let function xw f(x) satisfy the conditions as
in Corollaxry 1. If x+»p(x) is arbitrary nonnegaetive function,

then
k n-k
7) Mtrj(f;p) Y Mﬁ:%“(b—a)n (rv0).

nln
REMARK 1. Corollary 2 can be formally obtained from Theorem
1 putting A+ +po. Using N.ESTUND s result ([9)), the ine-
quality (7) can be substituted by a somewhat simpler but we-
aker inequality

ul (r5p) ¢ BD)L(p-a)® (z>0).

3. SOME SIMILAR RESULTS

According to the results from the previous section and
b

Sh(x)dx
8

b
the inequality £ 5|h(x)|dx, we obtain the following
&

inequality

b m
deGrwx=d_ (P (o) (2N (2)- (-1 e o))
: -

(8
¢ M(m! )2 (pg)?m+l
(2m)1 (2m+1)!

REMARK 2, If f(k—l)(a) = (-l)kf(k—l)(b) (k=1,000.,m), inequa=
lity (8) reduces to (1).
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THEOREM 2. Let Inf={0,l,.oa,n} and let {Pﬁkkel be a har-
onic sequence of polynomials on [0,1] (Pp(x) =P _1(x)) If
xwf(x) is n-times differentiable function such that

if(n)(x)g £ M (¥xe(a,bs), then

n
Poii%x)dxa;«-ukw—a)‘{(Pk<o),f<k‘“<a)-1>k<1)f<k-1)(b))

(9) L
£ M(peayntl S[P-(t)ldt,
¢ "
b
Proof. If h(%) = f(a+t(b-a)) we have saf(x)dx=

1
= (b—a)soh(t)dt, wherefrom, applying integration by parts on

the last integral, we obtain

1 1
(10) Sh(t)dt = h(l) - S"bh‘(t)dt0
0 C

Since Pl(t) = Pot+-Pl(O) (Po(t)==Po), equality (10)

may be represented in the form

1 1
p_ Sn(t)at = Py(L/h(1)-P (0)R(0) - IPL(EIn"(L)db,
0 0

1
By succesive integration by parts of soPé(t)h’(t)dt

(n-1)-times, we obtain
¢ : ( (
o Ky reyiy (k=1) k-1)
P, éh(t)dt - ggg(al) (reomt Y 0)-p 1M,
1
+(-1)" 52 (e (5,
O

from where (©) follows.
COROLLARY 3. et function xe»f(x) satisfy the conditions as

in Theorem 2 and let f(k>(b)==(-l)k_1f(k)(a) (k=040004n=1).
Then



b

n+l
(11) Sf(x)dx §‘ﬂ§2:§lf~_'
& 2n(n+1)!

ﬁ% (t-1/2)", in Theore: .

]

To prove this, btake Pn(t}
REMARK 3. 7z inequality (11) is obtained in [6] with some-

vhat stricter conditions for f.
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CLASSIFICATION OF FORMULAS
FOR N-DIMENSIONAL POLYNOMIAL INTERPOLATION

Dusan V. Stavi¢, Milorad J. Stanojevié

ISTRACT:

e increased significance of interpolation in complicated computer calcu-
tion of the function values for either one or several variables imposes the
ed for evaluation of the possibilities and the efficiency of some interpola-
m formulas. The paper gives a classification of the formulas for polyno-
ial interpolation in the n-dimensional space (n =1, 2, 3, ...).

L4
ASIFIKACIJA FORMULA ZA N-DIMENZIONALNU POLINOMSKU INTERPO-
LACIJU. Poveani znacaj interpolacije u komplikovanim kompjuterskim iz-
racunavanjima vrednosti funkcije jedne i visSe promenljivih namele potrebu
za vrednovanjem moguénosti i efikasnosti pojedinih interpolacionih formula.
U radu je data klasifikacija formula za polinomsku interpolaciju u n~-dimen-
zionalnom prostoru { n =1, 2, 3, ...)s

CLASSIFICATION

The classification is hierarchical with the following order of priori-
ties: according to the number of space dimensions as the most important
criterion, according to the related number of nodes for the same number
of space dimensions, according to the positions of the nodes and in relation
to the algebraic accuracy when the above three. conditions are satistied.

The algebraic dccuracy of each formula is expressed by a polynomi-
al, having coefficients with arbitrary values, so that the formula is exact
for that polynomial ( not only approximate ).

Known formulas are transformed in this paper in order to enable
the classification.

In applications, the cases with symmetric node positions are of spe-
cial interest. In the notation used in this paper the subscripts with the func-

tion denote node positions.
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ONE-DIMENSIONAL INTERPOLATION
In the case of one-dimensional interpolation the general formu-

la is
n

n
X - X
i

j=1 \ k=1 k
k#j

usually referred to as Lagrange formula containing the following four known

specific formulas, for example in [1] .

fx) = a

f(x) = £ —
f(x) = a+bx

£(x) = (1= x)f) +xf, ————e—

f(x) = a + bx + cx2

il

f - - - — —_—
(X) = 2X(X 1)f 1 + (1 X )fo + ZX(X + 1)f1

f(x) = a+ bx +cx2 + dx3
1) = - gx(e - Dx - 2)_ + 2 (7 - 1) (x - 2)i,
_%x(x+1)(x—2)f1+%x(x2—1)f2 o ’[ .

TWO-DIMENSIONAL INTERPOLATION
In the case of the two-dimensional interpolation three-point formulas

are presented first. These formulas are function approximation by means o:

the plane z = A + Bx + Cy. ® e
f(x,Y) = A+Bx+ Cy
1
fix = {1 -x -y)f
(x,y) = (1 x Y)0,0+Xf1,o+yfo,1
fx = (1 -x-2y)f
(x,y) = (1 -x - 2y) O,O-a-(x+y)f1,o+yf_1.)1

‘o )
f(x ==(1-x - = -
Goy) = (=X =yt g+ vl g+ g1 x -0
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1he general three-point formula has been considered, for example,

Young and Gregory and it reads: ®
f(xi,yi) = fi e
®
2) £(x,y) = (o f + o fy) + o f)/d |
o = (x —xz)(y - Y3) - {x -X3)(Y - Yz)
ay = (x-x)y-y) - (x-x)y-vy,)

2
1t

3= k-x)y-y,) - (x-x)(y-y,)
d = (xy - x )yg -y} - (gmx )y, -y,))-
The formula (2) is equivalent to the followiﬁg formula given by

erezin ~ Zitkov ( r and R are vectors )

ES s
r = (x —xk)l + (y -Yk)J

> >
T T (xk—x2)1 + (yk—yg)]
> >
R, = e =i = (g - %))
(r,R,.) (r R,.) (r R_.)
2 3
f(x,y)=-—-£—f(x Y. )+ 3 31 £(x,,y. )+ 127 g ,Y3)°
o) VY k) 22 Ry
1223 23 31 31 12

This formula may be written in a shorter way, as follows

(r,R,.)
(3) - f(x,y) = Z———z—i (x

3 (rpR,5)

1,)’1)1

where 3 represents the number of cyclic permutation.
Four-point formulas which include the term with xy are presen-
ted here

f(x,y) = A + Bx + Cy + Exy

f(x,y) = (1 -x)Q1 —y)fo’o +x(1-y)E, o+ (1 - x)yfO + xyf

1,0 ,1 1,1

£(x,y)

i

1 2
Fxx-DE o+ (1 -x" -y)f

1
.0 0,0+—éx(x+1)f

1,0%,1



. 1 2y, 1 _
i(x,y) = EX(X - 1)f_170+ (1-x )f0’0+(§x(x +1) y)f1,0+yf1,l°

The following five-point formula instead of the term with xy

. 2 2
contains the terms with x and y

f(x,y) = A +Bx+Cy+ sz + Fy2

2 2 1 '
flx,y) = (1 -x" -y )f0’0+§x(x+ l)fl,o

1 1 1
3= ot - R - 1)f o
2y(y4—1)f0,1+-ZX(x 1)f»1,0 sv(y - 1) 0,-1

The following six-point formulas contain all the terms mentio-
ned earlier

f(x,y) = A +Bx+Cy+ Dx? + Exy + Fyz

1
f(x,y) = 5(1-x - yI(2-x - y)f0,0+ x(2 -x - Y)fl,o

1 )
+ y(2 -x - y)fo,1 +§x(x - 1)f2,0
1 o Gyt B
+xyf1’1 +—2—y(y - 1)f0’2
1
f(x,y) = (1 -x)(1 "Y)fo,o +(x-35y)Q1 _y)f1,o
1 1 @
+ (y - 2x)(l - x)f071+ éx(x - 1)f2,1

1 [
+(x(1-x) + y(1-y) +xy)f191+ zY(y‘l)f1,2’

B e ]

The most general six-point formula has been considered by
Berezin and Zitkov, who present a complicated formula[z] .
This formula can be presented in a simpler way by the notation

of the formula (3), as follows

(rRy ) (r Ry ) (

(r Ry ) (r3Rp)  (

TooRoy) (g Rys)
)

) (r

TeoRaa) (TgaRas

f(x,y) = f(x_ ,y. ).
Z (r..R ) (r,.R 11

6 | oRog)(rygRys) (r e Ry (rg R,0)

(r Ry ) (r13R35) (rgoRy ) (r e Ro0)
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The following nine-point formula has the same order of accuracy.
2 2 1 2y

fx,y) =(1-x)(1 -y )f0,0 + —z—x(l +X - Xy )t1,o
1 2 1 2

+ 2}’(1 +y~x Y‘)fo‘,1 - —x(l - X+ Xy )f_1

—éy(l —y+x2y)f + = xy(l +xy)f

-1 1,1

1 . 1 )
—ny(l - xy)f“_1 + 4xy(l - xy)f_l,~1 ny(la-xy)[_ .

1,1

J. H. Lambert[}] gave the formula which can be concisely

written as

n m
_ y

(4) fe,y) = E E ( k ) k )4 m—k,ka,O’

m=0 k=0
where:

A f
0,0 = f
'Y PLq P,q

It

*1,0%,0 = p+1,a Tpya
%0,1%,a = p,a+1 " 'pya
An+1,mfp,q - An,mAl,Ofp.,q
Ar1,m+1fp.,q An,mAO,lfp,q :
A specific case of thé ten-point formula (4) is

2 2 2 3
f(x,y) = A + Bx+ Cy + Dx__ + Exy + Fy + Gx° o+ Hx y+Ixy2+Jy

f(x,y) = %(1 -X - y)'(z -x -y)(3 -x - y)f0,0
+%x(2,—x—y)(3—x-y)f1,0 L @
+—%y(2—x-y)(?»'—x—'y)fo,1 °
+—;y(y—1)(3—x-y)f2,0 °
+xy(3 - x - y)fl,1 +%x(x - 1)(3 - x- y)fO,2
+ ax(x - 1) - 21y o+ xy(x - L, |

1 1
+ éxy(y - 1)f1,2 +gy(y - 1) (y - 2)f0,3



F. B. Hildebrand gives the following formula

2 3
f(x,y) =A+Bx+Cy+Dx2+Exy+Fy + Gx

+ szy + Ixy2 + Jy3 + Lx3y + ny3

f(x,y) = .;(1 ~x) (1) 2+ x(1 %) +y(1 - y)] 0.0

+%x(x -y [2+x(1-x) +yQ1 -v)] f1,0
+%xy [2 +x(1 %) +y(1 - )] £,

+—%(1 -x)y [2+x(1 = %) +y(1 -y)] fO,l

+—éx(x -1 ) (x - 2)(y ~ l)f‘_ll,O

+ —61-(x -Dy(y - (y - 2)f(),_1 e &

1
gy - @=L

1 2
+—6x(1 -x My —1)f290

1 2 1 2
+ GX(X - 1)}’f2’1 +€xy(y - 1)f1,2

+ %(x - y(1 - yz)fo,2 + %x(x - 1)(2 - x)yf

THREE-DIMENSIONAL INTERPOLATION

-1,1°

For interpolation in the three-dimensional space the following

formulas are given

I(x,v,z) = o
f(X5YaZ) = £

0,0,0

f(x,y,z) = o +8x+yy+dz

(x,y,2) = (1 -x -7y~ z)f()‘)O

+ ZfO,O,l

0,1,0
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2 2 2
B(x, ¥ 2)=0+BX + Yy + 82 +ex +IXy+ Ny +0yz + 1z +Kxz

1
fc,y,2)=5(1-x-y -2)2 - x -y -2)f, o
9

+x(2 -x —y-—z)fl’o,o

+y(2—x—y—z)fo,1,O

+2(2-x-y-2)f

0,0,1

+—21-x(x - 1)fz.)0,0 + nyl,l,o

+'%y(y "D 2,0 Y011 ’
+§1z(z—1)f0,0,2+xzf1,0,1. ®

N-DIMENSIONAL INTERPOLATION

Suppose that the four-dimensional-space points are provided

f(ai, b o dg),

where:
i=1(1)na, jzl(l)nb, k:l(l)nc, z=1(1)ndn

The aim of interpolation is the calculation of the function value f(a,b,c d)

By intersecting the hyperplanes the following formula is obtained

n

o

~d

d
m
f(a b,c Z 9.4 f(ai’bj’ck’dﬂ)’
=1 =1 & m
#¢

i:l(l)na, jzl(l)nb, kcl(ll)nc.

BS

By intersecting the planes the following formula is obtained

nC C Cc - Cm
f(ai,bj,c,d) = E: [“] — f(ai,bj,ck,d)
k=1\ m=1 k m
m#k

i=1(1)na, j=1(1)nb,



By intersecting straight lines the following formula is obtained

" [ Tb b-b_
f(a,bye,d) =) S |1apbyead),  i=iln,.
j=1 \m=1 "j "m

By applying the mentioned Lagrange formula (1) it can be obtained

n n
_a a a-a_
f(a,b,c,d) =~ r_l P f(ai,b,c,d).
1=1 m=]1 i m
m#l

For the dimension number greater than four, the beginning of the pro-
cedure is analogous, and the ehd is the same as given in the above algorithm.

When dealing with the interpolation having a larger number of points
in the n~-dimensional space the simplicity of notation is important.

A more extensive work on formulas with a larger number of points is
expected in future. The aim of this paper is not to deal with the formulas
based on a larger number of points, because the application of these formu-
las is smaller due to larger computation procedures. Due to the limited
length of the paper some more complex, but useful formulas, are not included

For this reason the paper contains only the most important formulas
for computer calculation.

G. Alikalfi¢, A. Djordjevié, A. FiSer-Popovié, D. T. Jovanovié,

D. S. Mitrinovi¢ have read this paper in manuscript and have made some

valuable remarks and suggestions.
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ON APPROXIMATIONS OF SOLLUTIONS OF SECOND ORDER LINEAR
DIFFERENTIAL EQUATIONS
BoZo Vrdoljak

ABSTRACT:

- The paper deals with second order linear differential equation with functional
coefficients. For the corresponding sufficient conditions we obtain results on
approximation of certain classes of Cauchy's solutions and on behaviour and
stability of all solutions. The results were obtained by transforming the second
order linear equation to a respective linear system of equations and by stu-
dying solutions of that system with respect to the "circular" neighbourhood of
an integral curve. The obtained results are generalized to a quasi-linear equa-
tion as well.

O APROKSIMACIIAMA RJIESENJA LINEARNE DIFERENCIIALNE JEDNADZBE
DRUGOG REDA. U radu se proutava linearna diferencijalna jednadiba drugog
reda s funkcionalnim koeficijentima. Uz odgovarajuée dovoljne uvjete dobivaju
se rezultati o aproksimaciji:odredenih klasa Cauchyevih rjesenja, kao i o pona-
Sanju I stabilnosti svib rjeSenja. Do rezultata se dolazi transformiranjem line-
arne jednadZbe drugog reda na odgovarajuci linearan sistem jednad?bi i proma-
tranjem rjeSenja tog sistema u odnosu na odgovarajudu "kruZnu" okolinu neke
integralne krivulje. Dobiveni rezultati se poopcuju 1 na kvazilinearnu jednadZbu,
et us consider the equation
(1) y'+p(t)y'+ q(t) y=£(t),

where p,q,feC(I), I=< t,ea>, let y:‘l’(t),- Yec'(I) be an arbitrary so-
lution of equation (1). We s—t-wall use functions B,peC (I), p(t)>0 on I and
notations p_=p(t ), B =B(t ), p_=p(t)), ¥ =¥(t ), y =y(t), yl= y'(e)-
THEOREM 1. Let us take functions 8 and p such that
(2) (B'+ B2+ Bp+ q=1)2 <U(B-p-p'/p)R-p'/p) on I.
(a) If
(3) B-p’/p <0 on T,
then all solutions y=y(t) of eguation (1) satisfying initial condition

() (- ¥ 02+ (y =By )2 <p2, tel
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satisfy also condition :

(5) Jy(e) -¥(e)| <p(t) for every t>t .
(b) If

(6) B-p'/p>0 on I,

then problem (1)-(4) has at least one solution satisfying condition (5).
Proof. For equation (1) let us introduce the substitute

(7 y'= x+B(t)y,

where x=x(t) is a new unknown function. Equation (1) is transformed to the

system of equations

X'z <(B+p) x = (B+ B +Bpra)y + £
(8)
yl= x+8y.

Let K={(x,y,t): x=0(t), y=¥(t), teI), where pec(I), o(t )=0
is an integral curve of system (8). Let Q=R2xI and

o= {Goy,0eR 1 p®[x-00) +y ~¥®) )< 1]

be open sets. Let tT(t) be a tangential vector or the integral eurve (x(t),
y(t), t) of system (8) in points of surface dw (Pw=Cw\w), and let v(t)

be vector of external mormal on surface 9w, i.e.
-2 -2
w(e)= (x"(8), y'(6), ), ve)=((x=-0)p , (y-¥)p ,
=3
= [(x-0)2p" +(x-0)p' +(y-¥)2 p'+(y-¥)p¥'] p ) .

Let us consider now the scalar product P(t)=(tiv) in the points of
surface 9 w. We have
p-3 -2
P(t)=(-B-p=-p'/p) (x-0)2p +(B-p'/p)(y-¥)%p +
(9}
+(1=B=B=Bp=q) (x-) ™ (y-¥) 5.

Let us note that P(t) is a quadratic symmetric form

P(t) za,, X2 «4-2a12)(1'+a22‘12 ,
where , , .
311=“B“p'p/p: 312= 321=(1“B"32'Bp“q)'/2r asF B=p'/p,

(10) X=(x-0)p™ , Y=(y-¥)p".

Moreover, it is sufficient to note the following.

(a) Conditions (2} and (3) grant conditions -a,,>0, a,,a,,-23,>0 on
I, and according to Sylvester‘s criterion it follows that P(t)<0 on I.Rela-
tion P(t)< 0 means that set ®w is a set of points of strict entrance for
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integral curves of system (8) with respect to sets w and Q . Consequently,
all solutions of system (8) satisfying initial condition

2
xf)+(yo-=-‘1’o)2 <p0 , toeI

(xo=x(to)) satisfy alsp condition

(x(t)-(p(t))2+(y(t)-‘l’(t))a< p?(t) for every t>t¢ .

Since, in view of (7), X, y(’)u B,¥, all solutions of equation (1) satisfying
initial condition (4) satisfy also condition (5).

(b) Conditions (2) and (6) grant conditions a;, >0, a,a,,-
I, and it follows that P(t)>Q on I. Thus 9 w is a set of points of strict
exit of integral curves df systern (8) with respect to sets w and Q . Hence,

a2
a12> 0 on

according to retraction method (14)), there exists at least one integral curve
of system (8) which belongs to set w for every t eI. Consequently, problem
(1)-(4) has at least one solution satisfying condition (5).

Let us note that conditions of Theorem 1 are simplified if functions B
and p are taken in a special form.
COROLLARY 1 (p(t)= r). (a) (B(t)z=1) If
p>1, 0<p=2yp-1<q<p+2yp-1 oniI,
then all solutions of equation (1) satisfying initial condition
2 ' 2
(yg=¥) +(yg+y,) < re,
where r is a positive constant, satisfy also condition
(11) ‘y(t)-‘l’(t)‘ < pr for every £> 0t
(b) (B(t)= 1) If '
p<~}, 0< »p-2f=p-1< q<-p+2Y=-p-1 on I,
then at least one of solutions of equatidn (1) which satisfy initial condition
2 ' 2
(yo"wo) *lyy=y,) s 1
satisfles also condition (11).
COROLLARY 2 (B(t)= 0). Let
(a-1)"< 4 (p+p'/p)p’/p onI.

(a) If p'>0 on I, then all solutions of equation (1) which satisfy ini-
tial -condition

2 12
(12) (yo-‘Yo)‘+yo <p2, toef'I



satisfy also condition (5).
(b) If p'< 0 on I, then problem (1)-(12) has at least one solution sa-
tisfying condition (5).
COROLLARY 3 (B(t)E -p(t)). Let
(g=p' - 1< Y(p+p'/p)/p on I.

(a) If p'> 0 on I, then all solutions of equation (1) satisfying initial
condition

B )
(13) (yo—‘lfo)2+(y;+poyo)- £ P2

satisfy also condition (5).
(b) If p'> 0 on I, then problem (1)-(13) has at least one solution

satisfying condition (5).

THEOREM 2. (a) If there exist functions B and p such that

(14) 2B+p < 0, |B+B2+Bprq-1|< 2(B+p+p'/p)
or
(15) 2B+p 20, |B+B2+Bprg-1] <2 (-B+p/p)

on I, then statement (a) of Theorem ! holds true.
(b) If there exist functions B and p such that

2B+p >0, |B+B2+Bprq-1|< 2(-B-p-p'/p)

or
2B+p £ O, "B'+[32 +Bp+g=-1l< 2(B=pYp)

on I, then statement (b) of Theorem 1 holds true.

Proof. Let us use here the first part of the proof of Theorem 1 until
the formation of the scalar product P(t) according  to formula (9). We shall
also use notations (10). It is sufficient to note that the following estimates
for P(t) hold true.

(a) Since abg (a2 +b2)/2 for every a,beR, on S it is valid

P(£) (=B =p~p'/p) Xe+(B=p'/p) You|1= B=B2-Bp-q |- (X2 +¥2)/22B(t).
In view of {14) on 3w it is valid

B(t) s (=B-p=p'/p+|1 --[?>'-‘-[32—[3>p--<:1\/2)()(2 + Y2 )4 (2B+p) Y2 =
= (-B-p-‘p'/pfl1—B'—Bz-Bp—ql/2)+(28+p)Y2<0.

Moreover, in view of (15) on 9w it is valid

B(t) = (B-p'/p+ | 1-B-B2=Bp-q|/2) - (2B+p)¥ < 0.
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(b) Here it should be noted that on 9w

P(t) > (-B~p-p"/p)X2 + (B~p/p)Ye = | 1 -B-B2-Bp-q| (X2 4+ ¥2)/2 = B(t)
nd that P(t) > 0.

Conditions of Theorem 2 are simplified if functions B and p are taken
in a special form. For example B(t)20, -1, 1; p(t)Epoe's(t"to), sER.

Using the obtained results and the known properties valid for the linear
differential equation, we can draw the following conclusions related to the
juestions of stability and approximation of solutions of equation (1).

1. If function p is bounded on I, then in cases (a) of all given state-
nents we have stability of all solutions of equation (1) with the function of
stability o ([51). If p(t)—>0, t-»oco, we have asymptotic stability of all so-
utions with the function of stability p.

2. If p(t)—+o0, t—>»co, then in cases (b) of all given statements we
jave instability of all solutions of equation (1) with the function of instability

3. Considering the approximation of certain classes of solutions the re-
sults given in cases (a) with the bounded function p are very significant. Ap-
proximation is particularly godd when p(t)=> 0, t—»co. In that case we have
precise asymptotic behaviour of certain Cauchy's solutions. Consequently it
should be noted that conditions of Theorems 1 and 2 do not change if instead

of function p(t) we take function C p(t), where C>0 is an arbitrary constant.

In the case of a homogeneous equation (f(t)=0) it is interesting to con-
sider the behaviour of solutions in the neighbourhood of a trivial solution
y(t)x 0 (case ¥(t)z0).

Remark. Statements of Theorems 1 and 2 are completely valid also for

a quasi-linear equation

y"+ply,t)y’ +aly,t)y=£(y,t),
~where functions p,q and f satisfy the conditions necessary for the existence
and uniqueness of solutions on RxI, only if the respective conditions of Theo-

rems 1 and 2 {p=p(y,t), q=q(y,t)) hold true on 3w,
Example 1. All the solutions of the Bessel's eguation
teym+tyl+ (82 =22 )y=0, AeR
which satisfy the initial condition

2 ' 2 2
(yo-‘i’o) +4(yo+ y0/2t0) £ P tc§€ I,



€

where £>\)\2—1/lt\/(1—25), s€R, 0<s<1/2, then also satisfy condition
8
| y(e) =¥(t)| <p (b /t)° for every t>t .

For example, for A =1/2, ¥(t)= 0 all solutions of the Bessel's equation
satisfying initial conditions Y= 0, \yg\g P, to> 0 satisfy also condition
ly(e)j< po(to/t)S for every t>t . Let us note that for A= 1/2 Bessel's equ-
ation has a general solution y = (C1cos t+ Czsint)/\/F. .

The proof of this result follows from Theorem | when B(¢t)=-1/2t,
plt) =p (t,/t)%.

Example 2. Let us take equation
y"+p(e) (e y)+alt) y=£(t),

where p(t) 22, lq(t)}<2(1-s), seR, 0s<1, onI, t> 0. All solu-
tions of this equation which sastify the initial condition

2 L 2 2 .
(yo—WO) +(y0+y0) ek, t, el
also satisfy condition

=3( t-to)

fy(e) =¥(e) | <p,e for every t>t_.

It is interesting to consider the case f(t)=z 0, ¥(t)=0.

This result follows from Theorem 2 when B(t)=-1, p(t) Epoe's(t'to).
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ON HYPOTHES!S TESTING IN SPLINE REGRESS!ON
K. Surla, E. Nikolié, Z. Lozanov

ABSTRACT:

Algorithm given in [2]| for determing the mumber and the position of knots
of the spline function is modified according to statistical tests in [8]
for fitting the cubic spline regression. Several theorems conected with te-
sting continutty of the third derivative are proved,

0 TESTIRANJU HIPOTEZA U SPLAJN REGRESIJI: Algoritam dat u [2] za odredji-
vanje broja i poszicija Svorova splajna je modifikovan u skladu sa statisti-
Skim testovima datim u [8] za’ formivanje kubme splajn regresije. Dokazane
su neke teoreme vezane za testiranje hipoteza o neprekidnosti tredeg izvoda.

1. In modeling, curve fitting or recovering functions contaminated
by noise, the problem of determining the minimal number and optimal positi-
ons of knots is still open, although some attempts had been made, see [5],
[10], [11]. in [2], [3] en algorithm for automatic determination of the
number of knots and their positions for fitting a least square spilnhe of
k-th degree is given. The objectives are (i) the given values of dependent
variable should be fitted closely enough, (ii) the approximating spline sho-
uld be smooth enough, in the sence that the discontinuities in its k-th de-
rivative are as small as possible, Also, it Is Vpresumed that the data are
not contaminated by noise. In fitting spline regression curve to discrete,
noisy obsrevations, besides the problem of choice of knots, occurs the pro-
blen of their statistical testihg. These problams are investigated in [1],
[4], [7]. [8], [10], [11]. Hypothesis testing in B-spline regression is
investigated in [8] and [11].This paper is an attempt to applicate the
results obtained in [2] to B-spline regression, and to mcdify the algorithm
in [2] according to the statistical tests in [8].

2. Given the measured function values yq, at the points xq, q=l,...,m,

X <X , coisider the model
g “qtl

(1) y =XC + ¢
P g My r
B30x)..B 0x))] t3 Y1 1
X = : . , C'= : ’ y = . J y €= ‘
B_, (% )...Bg(xm) Cq Yo €n



ewW(0,0%1), Bi (x) are B-splines functions of the third degree on the grid
g+1” b, with additonal knots )\_3=>\_2=)\_1=a, bs)\g+2=
We suppose that there must be at least one subset of g+b

a = )\0<}\1<..;-. <Ag<k
>‘g+3=>‘g-l-ll'
strictly increasing values x_ , (i==3,...,9) such that

(2) Xq _h<>\~r<xq i(condii:ion Schoenberg and Whitney).
i i

The approximation criterion is as in [2]
g
iL-3

g
Minimize I, ( C.a, )2, subject to the constraint
q=1 ii,q

(3) m ¢ \ .
ol O 12368 g7 < 8

where S is given, nonnegative constant (smoothing factor).

S T Bi(Aq+0) - Bi(xq=o), (@=1,...,q), (i=3,...q).
We remark that our spline function S(x) = ig-3CiBi(x) becomes a single
po]ynomia] on [X ’Xl:] if i='3ciai,j=0’ (qu+],...,r—1)’ asquxrsb_

In [2] it is shown that problem (3) has a solution and that the algorithm
given there leads to the number of knots wich

o m gk

Flp) = Iy (vg= Z3¢; (P (x ))* < s,

where p_1 is Lagrange”s multiplier of problem (3). Also, the relation be-
tween the parameter p and the number of knots is given. So, for p== we gel
the least square spline, and for p=0 we get the least square polynomial,

3. For testing the continuity of the third derivative at the knot
)\J. we test the following hypothesis (see [8]):

g
Hy ¢ i;_3ci(3i(xj+o) - Bi(xj-o)) =0

We use the statistics
oo 2 1o fyyay = Tyy 1 ey 2
F =(| )2 (X)_(1) 1) (m-g-b) or F = (1 C)
y (1=X(XX7) X"y v(1-c)
where V(1°C) is estimated variance of linear combination t°C, l‘=(a“3 i’
ag,jr ,aq,j). Under null hipothests F has Fisher distribution F1,m=g-l+'
Using the fact that the linear combination which is tested is contrast,

{see [8]), it is mough to evaluate g+3 compoheits of vector 1. If hypo-
thesis HO is accepted, we shall say that knot )\J. is statisticaly not si-
gnificant. Statisticaly not significant knots we shall denote by Xj’
(J=t,....9).

L, Denote the spline function with knots >\j(j=0,... ,a+1) by § {x).
The idea of our algorihtm is: Determine the least square spline So(x) (si-
ngle polynomial). If the sum of squares of residuals for So(x) is less

than S, S0 (x) is the solution to our problem. If not, we determine
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successive least square splines Sg {x}, Jj=1,2,... untill we find
- 2
Fy" 10" S 05
visfied. The additional number of knots Ag. and their positions in each
eration is determined according to algorithm I (see [2]):
Ag.= {! =0
3 min{A1,02 ,max{1,A3,Ab}} ,  j=1,2,...

“20g;. 5 A2=m=lo=gj, A3=[;Agj_1/2] ,A4=[(ng-S)Agj_=1[|ng_1— ng ¥

with

2 additional knots are then located inside the intervals D‘i’li-ﬂj with
rgest partial sum of squares of residuals. For details see [2].
Let knots A, (j=0,... ,gj_”) be determined. As the nextiteration we:
| Determine spline ng(x).
) Test all knots )\ E'(i= 1,...,9,) using the given statistical test in 3.
i2) If Fg.< (x) is the solution to our problem. I[f not we go to (Zv)
1) The addltlonal knots are determinated according to the algorithm I .
| New set of knots A, (|=0,...,gj+1+1) is formed takeing statisticaly
significant knots from () and additional knots from (Zv).
(vZ) Put 957941 and go_to (<)

From E_i(gj-l-‘l and gj<gj it follows F-=~j > ng+1 and FEJ > ng. Suppo-
sing that the sum of squares of residuals will not be significantly cha-
nged by substituteing knots A, (i=1,...,gJ.) by 7; fi=1,... ,Ej) we can con-
clude that the relation (5) will be satisfied after finite number of ltera-
tions. Namely, for maximal number of knots g=m-4 we get a interpolating

spline, i.e Fm_L‘=0. As the values ng and ng+l are evaluated the rela-
tion Fg % Fg- can be checked. If‘significant-deviation occurs, it is
possiblé+to tak{z g, instead —dj' This algorithm, compared with algorithm in
[2] changes the position of knots, and we get a curve with statisticaly
significant knots. ‘ '

5. Before proving several statements, we shall introduce some defi-

3

nitions.and notations. Denote by P.(x)=aix +bix2+cix+di the restriction of
function 87(x) on interval ‘D“if"\‘iﬂ] and put P={P, (x), i=0,...,g}. The
relations between coeficients of Pi(x) and coeficients of S (x) are

given in [9].

DEFINITION 1. Polynomials Pi(x) and P, _,(x) are not statisticaly different
at a prescribed level of significance o, if their corresponding coeficients
are not statisticaly different at the level o.

DEFINGFION 2. Function S(x) is statistical equivalent of spline S(x) at

the prescribed level of significance o If
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() S) = Qi (x) = _a_ix3 + b'x2 + clx + d s x(:"_]:u ’ui+11 M A, where

= {ui, i=0,...,r+1}, A = D‘i’ =0,. ..,g+1}, and Q =P, where
Q= {Qi (x), i=0,1,...,r}.
(£2) for fixed values x, S{x) and S{x) are evaluated using the polyno-
mials whicw are not statisticaly different at level o.
(i%2) Discontinuities of function S(x), its first and second derivatives
at points u; arenot statisticaly significant at the level o.
Lema 1. If hypothesis Hy is accepted at the level o, then polynomials

1(x) and PJ (x) are not statisticaly different.
Proof. Hypothesis Hois equivalent to the hypothesis

Hg 6(aj- aj_]) =0 and Hy: A(aj -aj_1) =0

where A is constant. Spline S(x) and its first and second derivative is
continuous at point A., so
2000y )6 lajma ), Aoy )=o), —A:';(aj-aj_1) =44
It follows that hypothesis of equality of correstonding coeficients of
polynomials Pj-l(x) and Pj (x) are accepted at level .
Theoren 1. Let there exists at most one statisticaly not significant
knot A. between two statisticaly significant knots of spline S(x).
Function S(x) where S(x) = Pj_1(x) for x e[—J 1, ] and S(x) = S{x)
otherwise is statistical equivalent of spline S(x) at level o.

Proof. We know that

- -23) (a, -
2
Pj-1(>‘j+1) J+,(AM) = X476, >\J+1+3}\j)(aj-aj_1),
Pjat On) = Piag Qjpq) = (85760 ajmay ).

So statement follows from Leama 1.

Theorem 2. Let A'={>‘i’ i=0,... ,gj} s set of knots of spline Sg'(x) j=1,2.
{F 9 >92 and Al;DAZ then: ’ /

F - F "
gz 9] m-g'l
- VoFeq kg -

(6) F = =
91

2 2 ’ 2 2 2 2

Proof.  From Fg1/o v Xm-g1—14’ ng/o v Xm'gz'll’ and ng/o > Fg}/o

itfollows that F_ /o2 = F_ /o® ay? [6]. According to Fisher-Cohran

9 94 9179%
theorem it follows that Fg /o? - Fg /o? and Fg /6? are indipendent and
that (6) is true 1 2 1

Theorem 2. can be used to estimate the upper limit of increasing
of the sum of squares of residuals of the spline finction with smaler

number of knots, when positions of knots is not changed. For prescribed
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evel of significance o value Fu can be found such that
P{0 < F< Fa} = 1-o.
hen 9179

0<F —F <F F —o Tk with probability a.
9y 94 o gy Mg,
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APPROXIMATION IN DISCRETE CONVEXITY CONES
Ivan B. Lackovié , LjubiSa M. Kociéd

ABSTRACT :

The necessary and sufficient conditions for positivity of linear

continuous operators on a cone of convex sequences are given. The
main theorem is based on the representation of every sequence as

a limith (in d_ metric, given by (2)) of sequences ull) given by

(6). This 1s a”discrete analogue of the result given in [ 21, and
a generalization of result from [ 11,

APROKSIMACIJE U DISKRETNIM KONUSIMA KONVEKSNOSTI. Dobijeni su po—
trebni i dovoljni uslovi za pozitivnost linearnih neprekidnib o=
peratora na konusu konveksnih nizova, Teorema se bazira na repre-
zentaciji svakog niza kao granice (u metrici dg , koja je data sa
(2)) nizova u\17 datih sa (6). Dobijeni rezultati predstavljaju
diskretnu analogiju rezultata iz [ 2131, i generalifu rezultate iz
{11,

1. ALGEBRA

In this paper, the following denotations will be used: N =
{1, 2, 3, oo 3, N =NU{OY, x=(xgyxyseee ) =(x (el ) ,
S = the set of all seguences x ., Further, the sequences ey €S
(n sNo) is defined by

(1) e, = ( 830 (el ),

, - 0, k# n ,
where 5nk is Kronecker’ s delta, 6nk =11, k= n. ° For two

sequences X,yeS we write x=y if Xy =Ty for every keNo ’
and X +y = (xk + yk)(ksNo), If AeR then Ax means (Xxk)
(keNo). Thus, S together with defined operations consist a li-
near space over the field R, with the sequences en(neNo) as
a bases

The sequence X = (xk)(ksNo) is convex if A2xn = Xp.o-
2xn+l + xnz 0 (nsNo). The set of all convex sequences will be
denoted by K. It is known, that K is a cone in S.

Further, let DCR be a nonempty set. With F(D) we will
denote the set of all functions f: D=+ R, For the operator A:

S —» F(D) we say that it is linear if for every x,yeS and
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My ueR  tie equality  A(hx + /uy) = NAX + /by, holds.

If for xeS and erF(D) we have f_ =Ax, then we write
Ax 2 O if fx(t) z 0, for every te D. Similarly, &x =0 if
fx(t) =0 for every teD.

2. TOPOLOGY

Tet x =(xk) and y-=(yk) be two sequences from S, and
ds(x,y) be a distance between x and 'y, introduced with
+00 ' \xk— yk\

(2) ds(X,y) = z 2 e — °
. k=0 1 +\xk— yk\

Now, (S;ds) is a metric space with finite metric: ds(x,y)< +00
for every x,yeS5. The sequence x n)E 8 converges to xeS in
metric d if d(x(n), x) =0 when n = o. Then we write

(n)¢s n)

X - ¥ , Oor lim x = x 1in metric dg , and say that =x
n

(n)

a ds— limit for =x e
Now we have:

Lemma 1. Every sequence u.=(uk)(keNo) from 8 is a d ~limi
of the sequences u n (neNo) having the form

n
(3) u(n) = I u.e
k=0 Kok
Proof. We have
+00 . fu,| +00 . _
ds(u<n2 w = £ 27— ¢ 527 =2 | wherefrom
i=n+l 1+ fuyl i=n+l

ds(u(nz u) -0 when n =oo. Consequently,

n +00 _ ‘
b ukek> = I u,e (in ds- metric )

u = lim u(n>= lim( K&k
n k:o k=0

n

for every ueS.

%. REPRESENTATIONS

From the lemma 1 we have that the representation

+00
() u= I u.e,,
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oLas for every u.=(uk)sS . However, we need the following sta-
-ement concerning representations.
Let the seguences Eo’El and W be defined with

k
+00 +00 +00
(5) E =2e , E= Lke 4, W =23 (i-k-1)e. (keN ) .
° oo k 1 k=0 k ? k i=k4D i 0)

Now, we have

Theorem 1. (a) Every sequence of the form

n
+ I cﬁn)w

o " (neNO) ,

&) MO A(n)EO + /u<n)El

where A(n), /u(n) e R, c§n> 2 0 (keNO) for fixed n, is con-
vex, i.e. depands to the cone K.

(b) Every sequence ueK is a limit (in d, metric) of

sequences u'"’ given by (6).

Proof. (a) It is obvious that B =(1,1,1,...) and E,=
(0,1,2,3,0.2), i.e. APE, = A®E), = O (keN_ ). From (5) we also

§_O, 0414 k+2 _ _ 5 %O, 0£1i< k-2
have Wki= (151).y i k+2 which gives A wki= 1, iyk-p

ice€, A2w 2 0 for every isNo and kENOa In virtue of nonnega-

ki
(n)

tivity of cén) we have from (6) A2u(n)? 0. Accordingly, u is
convex for every nsNOo
(b) Substituting the obvious identity

k-2

w=u, + kAU, ¢ 5 (kei-1) 8Pug
i=0
into (4) we have
+00 ‘ k=2 ) o
(7) u = uge  + Upey + kiz(uo+rkAuo+i£O(k—1ml)A ui) € o

After some transformations (7) get the form
e + (au (T kep)
e + (Au L ke
k=0 X " koo K

u:uo(

+00 ) +00
+ I (A uk)( I (i_knl)ei) .
k=0 i=k+2

which is a dsnlimit of the sequence



(1’1) +00 +00

ut = ug Iey + Aug Zkek + Z(A Uy )( Z(l=k l)e ), or by notation;
k=0 k=0 k=0 i=k+2
introduced by (5) u(n) = u, E + (Au )E + Z(A uk)w Thus, we
k=0

+00 1y, =V, g _

have ( (n? u) - ¢ gk kK o s for every fixed n,
k=n+2 1+ oy v |

where v (k »n+2) is k-th therm of u(n). So, ds(u(n)u)=%0

n -0 i.e., U is a ds—limit\of the sequences u n given by (6

%, APPLICATIONS

Using the theorem 1 we can obtain the following theorem

Theorem 2. Let the operator A:S-» F(D) be linear and continu
over the sequences in S. Then, for every ueS, the implication

(8) uek =5 Auzo0
holds if and only if

G2 AE = AE, =0,

l=
(10) AW, = 0 (kENo).

Proof. i) Suppose that (8) holds for every ueS. Then, i

we thoose u=EO(u=E1) we have that ueK which imply AuzO, i.

20 (AElz 0). But -ueK too. Thus, A(—EO)2 0 or A(-ED20

wherefrom AE  =AE;= O. By theorem l-a W eK (krNo), so, in vi
tue of (8) we have AW, 2 0 for every kel .

ii) Suppose now that (9) and (10) holds. Then, on
the basis of theorem l-~b, every sequence urcK is d ~limit of
the sequence (u (n>)(neN ) given by (6). This means that u =
llm u(n), wherefron, accordlngly with continuity of A over ¢
sequences in S, we have

Au = A(]%mu“ﬂ)= 1En(Axﬁn%,
and, in virtue of linearity of A over the sequences in S, we
get
Au = 1lim ( k(n)(AEo) + /u(n)(AE ) + 5 c(n)(AWk) )

n k=0
and, if (9) and (10) holds, and keeping in the mind that cén)?
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ye 1analy obtain Au20.

temark 1. It is easy to see that our theorem 2 generalizes the
result of theorem 4 in [11. In this case an operator A have
the form of triangular matrix.

Remark 2. The representation (6) is a discrete analogue of the
relation (6) in [21. ''he sequences W, we can call a discrete
splines.
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- APPROXIVMATION OF CONVEX FUNCTIONS BY FIRST DEGREE SPLINES

Ljubiga M. Kocié

ABSTRACT:

A method for approximation of functions convex on a finite in-
terval by picewise affine function is developed. For the seg-
ments of approximating function we used the support affine fun-
ction f in prescribed points, and its graph lies not up then
the graph of f.

APROKSIMACIJA KONVEKSNIH FUNKCIJA SPLAJNOVIMA PRVOG STEPENA.

U radu je razvijen metod aproksimacije konveksne funkcije, deo
po deo afinom funkcijom. Segmenti aproksimirajuée funkcije su
potporne afine funkcije aproksimirane funkcije £ u zadatim
tackama, a njen grafik leZi ne iznad grafika funkcije f

1. INTRODUCTION

The problem of approximation of one variable function by
first degree splines (picewise affine functions, polygonal lines)
is minutely studied from many autors,and for classes (Cla,bl and
Cefa,b] , as well as the interpolated classes H&) and WH&),
see,for example, [ 1] and [31 . A lot of results are oriented t¢
applications on computers [ 71, In.all appearance, this kind of
approximation is especially important for convex functions. Erly

results was obtained by K. TODA (61 and T, POPOVICIU [41.

They were shown the following theorem:

Theorem 1. The first degree spline function

n
D) (Snf)(x) =pX +Qq + kZ ck(x«xk)+ , Xela,bl, nell,
=0
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where p,q€R, ckz o, X € [a,bl (k=0,1,0..,1¥) is convex on
la,bl. Furthermore, every convex function, defined on fa,bl is
the uniform limit of the sequence Snf of the form (1), whe-
re x, ¢ la,bl, p =1Ix_, X35 f1 , q = f(xo) - x Ix, x5 1]

2
and ¢, = E(b-»a)[xk, Xpp1r Fygos £3 (k =0, 1y 00s , 01=2)0

Of course, the spline Snf interpolates f in the

knoots x, [a,bl, and if we introduce for xe¢ Ia,bl

(2) epi f

i

(G B 1 y2 100 |,

(3) hyp £ {(qu) eRZ | y ¢ f(X)‘},

B

it is easy to see that (Snf)(x) e epif , for neN, and xe
la,bl.

On the basis of theorem 1, P, M. VASIC and I. B. LAC-
Kovié vere proved an important theorem on the positivity of
linear operators (8, p. 55 1. But, the attempt to formulate
an analogue theorem for functions of two (or more) variables,
based on TODA - POPOVICIU +ype theorem shall not be successful
The reason is that the coefficients, corresponding to ¢ will
not be nonnegative for convex function (x,y) - £f(x,y). By the
other words, a polygonal surface, inscribed in the graph of
f(x,y), must not have a nonnegative coefficients. In this sense
a polyhedral surface, circumscribed around f(x,y) will be
much convinient. Thus, we shall develope this kind of approxi-
mation for one variable function. This circumscribed spline wil
be denoted by snf , because it is a kind of lower bound for £

as 8,f is a kind of its upper bound. Also, (snf)(x) e hyp £,

2. PRELIMINARY LEMAS
Function f:(a,bl==R is convex on [a,bl if the inequa-

ity £+ (1 -Mv) & M) + (1-2Mf(y) holds for every u,Vv
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ta, of and A€ (0, 1) . The function f is called strictly con-
sx 1f above inequality is strict. Let Krla, bl and K+£a, bl
:note the cones of convex and strictly convex functions on

a, bl , continuous from the left (right) at the edge point a
'‘b). The function x —» p(%t,x) is called support function of con-

rex function f if the following conditions are fulfiled :
£f(x) > p(t,x), xela,bl , x#t and £(t) = p(t,t).

or strictly convex functions the following lemma takes place

see for ex., [51):

emma 1. Let f:0a,b]l = R be strictly convex on [a,bl, and let
;(x) be the right derivative of f in x. Then
a) f; is increasing function on [a,b]

9

b) for every agu<dvg£b holds

f(v) = f£(u)

£7(u) ¢
+ V = U

< f;(v)e

Let £ EK+[a,b] , and x1< x2<,.. <xn be a set of knoots
from (a,b). The first order spline, circumscribed around the

graph of f 1is given by

(4) (s,£)(x) =lsg?n {p(#i,x) }oox e la,bl ,

where p(xi,x) is affine support function of f in the point x,
(5) P(Xiax) = f(xi) + f+(Xi)(X=Xi) .

So we have

Lemma 2. a) snf interpolates f in the knoots Xq9eeogXyy

b) s, f is convex on [a,bl.
Proof. a) Let 1<£k€n be a fixed number. Then, sup {p(x.gx )}
B 1¢ign Tk

= p(xk,xy) = f(xk) which is an interpolate proverty.

b) As every function xra-p(xi,x) (i=1,2, ooy n) is

s
o
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convex, SO0 ip(xi,x)\ léisn} is a family of convex functions.

3ut, it is known ([ 51) that sup p(xi,x) is also convex.

1¢1ién

Now, let X and Xpal be two adjacent knoots. Corresg-
podent support lines are p(xk,x) ’ p(xk+1,x). Note that the

equation p(xk,xj =p(xk+l,x) have a solution

L0 0% g = TI00)x + £(x) - £(x )

(6) bty =
£ () - £10x)

it £i(x ) #E0(x) dee. if £ ek*ra,bl. The points t, (k=
1,2, evoy n~1) are the abscisses of vertex of the polygonal 1i

ne which consists the graph of the spline sn(x).

Lemma %, If f eK'[a,bl then the inequalities

(7) X &b & Xy

holds for every k=1, 2, ooy N=l,

; £(xy,q) - £(
Proof., From lemma 1 -b) , we have that f;(xk) ¢ okt

el T %k
i.e. from x4 -x >0 follows (xk+lnxk)f+(xk)<f(xk+l) -f£(
wherefrom we get xk+1f+(xk+l)-=xkf+(xk)-+f(xk) - f(xk+1)< X
°(f;(xk+l> - f;(xk)) or %, <x. . 4. In the similar way, from
£l ,n) = £00) < £L00 )00 0 =x) we get £10xq )%, -
f+(xk)xk + f(xk) - f(xk+l) > xk(f+<xk+l) - f+(xk))? lees £, >
In the seqel, we introduce a v=shaped function vk w:
Vk(X) = 8up { p(xk,x) 9 p(xk+l’x) } 9
xk;<xsxk+l
which approximates f on [xk, Xk+1]“ Let Ek be defined wi-

E =T - v, and |-l be the sup norm. Then we have
Lemma 4. ||E || = £(t) = v (t,) , for every f eXtra,bl,

Proof. On the basis of definition of E we have

@) B(x) ={f(X) = (%), xelx ),

Flx) = plx. ~.%xX)e XelbioX, . ale
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We shall prove that E (x) monotonely increasing on (xk,tk), Let

X
k
(1 - A)y, which, with strict convexity of the function f gives

<x<y<t . Then, we can find A¢e(0, 1) so-that x = A+

(9) £(x) < AE(x) + (1=-2) £(y)

From (8), (5) and (9) we have E(x) =f£(x) - £(x,) - £/ (%) (x=x,)

MO + (L=-ME@) - £(x)) - £1(x ) (x=x) = (1=2) L£ (3)~£ (3, )1
= £ 0x + (1 =Ny = x) = (L-MU(F) - £0x) = £7 () (7-x,)1
= (1 =A)E(y) for x etxk,tk), which means that E(x) < E(y) ,
for xk<x<y<tk sin virtue of inequality O £ A< 1., Thus, E is
increasing on [xk,tk).

In the quite similar way one can prove that E is decrea-

sing on [tk’xk+1]' Being a continuous function, E(x) attains its

maximal value in ., i.e. E_ = sup {E(x)} = B(t,) = £(t,)
k [X, 2%, 11 k k
k" k+l
@ Vk<tk)o D
3. APPROXIMATION

On the basis of previous lemmas ve can state

Theorem 2. a) The spline s, have explicit form

Nel .
(10) (snf)(x) = AX + B +k£1dk(x,«—=‘tk)+ .

where A= (Ty=0 )/(by=t,)s B=(t1To= t,0))/(6)=6), T=p(x,;t,),

x e la,bl ,

dy =f+(xk+l) -f+(xk), t, is given by (6) and toza..

b) For every £ eK¥[a,bl, (snf)(x) approximates f

uniformly on [a,bl when n- oo and max (x X, )=p0
1¢k$n-1 K+l Tk

Proof. If we put Tk=p(xk,tk), then the vertex of the polygonal
line (4) have coordinates (tk,Tk). This line, being a graph of
the first degree spline have the form (10), where dk must be a
difference between the slope of the right support line, f;(xk+1)
and the left one, f;(xk). Of course, dkz.o k=lgoos,n=1. The



proof of b) follows from lemma 4 . Namely, for xs[xk,xk+lJ, we
have [f(X) - Vk(X)l < E<tk) = f(tk) =f(Xk) =f+(Xk)(tk—Xk), and
if we put h=x, =%, then lf(tk)-nf(xk)[$ w(f,h), and also

£, =X

k k
1y, f(x)—sn(x) -0, when n - 00 and mix(xk+l_xk)—’o o

< h, wherefrom If(x)«-vk(x)l<<m(f,h) +h =0, and according

Sofar we deal only with strictly convex functions. What
we have pointed out it is that no difficulties when we pass to
convex functions. Namely, these subintervals of [a,bl on whiech f
is affine, must be excluded, and remainded graph will be a stri-
ctly convex function. Now, we underline that the form of the spl
ne does not new. There is no difference, in formal sense, betwee
Snf and snf. However, we have snfé,fﬁ Snf on la,bl, and ne
trom this reason, we call Snf an upper spline and snf a low
spline of the convex function f . There is, also, a middle spl
ne, have been studying by M. GAVRILOVI¢ din [21 and provid
the mini-max approximation. The spline Snf exists for every
tinuous function. But, the middle and the lower spline do exis
only for convex functions.
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ON THE SPLINE SOLUTIONS OF BOUNDARY
VALUE PROBLEMS OF THE SECOND ORDER o bl

Katarina Surla

ABSTRACT:
A tridiagonal difference scheme {s depeloped for the boun-
dary value problem (1). This scheme was derived by cubic
spline according to Il “in [2]. The fitting factor of the

2sh? (h, Vg, /2)

[
Lk

form o, = was used in order to eliminate the

-2

hydy
condition hiqi <6. Error estimations for the solution and
ite derivatives are also given. In some. cases these esti-

mations appeared to be obtimal (Ba =0rh° =Mh2).

O SPLAJN RESENJIMA KQNTURNIH PROBLEMA DRUGOG REDA. Posma-—

trana je tridiagonalna diferencna Sema 2a konturni problem

(1). Zema je izvedena primenom kubnog splajna prema [3].

U nameri da se eliminife uqigg_giqf_56 uveden je fiting
ZshglhiV/gﬁ/Z)

faktor oblika o, = . Ocene gredke za refenje

2
hydy
1 iavode su date, U nekim sludajevima procene su optimalne

=3 = 2
(Sa O,ho Mh®) .

Consider the problem
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-y"+q(x)y =£(x), g(x) >0, x ¢fa,b}, (a,b eIR),
(1) { o,v(a)+B vy (a) =¥, v lo lele | #0,
aby(b)+BbY'(b) =Yb v labl"'lsb' #0.

The approximate solution of the problem (1) we wont to ob-
tain in the form of the cubic spline w(x) ecz[a,b] on the
grid

a=xX_ 4%, €...< X =b

1
(o)

The restriction v(x) on [xi,x. 1 is v (%) vy (k) =v T

3 (1=0,1,...,n)

i
(k) _ (k)
are constants which approximating Yy (xi).

(l)(x -Xy ) +— v‘z)(x =X ) +—V(3)(x -X
(k)

where vy

Using the equations
(2) (o) _

G.'.L i +q-l i fl (i=olll°“"n’ 5
h
- (2) (3) (o), (1) (2)
Fnar (U VR ) b, (v by tg Vot
hn véB)
R S et Y

and the suppositions on the continuity we obtain

h (o) _ o) (o) (o) _ _
(2) L vy = kiéiwl +2ivi MVl S Ri' (i=0,1,...,n)

where hi =X, 17y h,=maxhi, hn+1 =hn

i
h2 q 2
{~1"4=1 1 i+l 1
k, =1 - ) y M, = (1 = ec=an ) o ==
i 6o, , B,y ' M 6 0., By
2 2
hiq. h
(‘1+li)'l*(l*§_él)'hl
3 oy i i i-1
o £ £,
Tl =1 i i+14
R, + (h, ,+h,) + L, (=1,...,n-1)
i 60, 4 3¢ i=1-794 60,1
2
k=0 30 +h g o, N _(60 od;8
o "o 30050 a 30_ "o 6 o, Ho
h 2f £
= ey -8 =2 (0, _1
Ry = = Ya 5a 6 (a t5)
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h2 q
n=14pn=1 1
¢ =(1 - )y ; W =0
n 6 0.3 hm_=1 n
2 q o] 60 q
. . | n-1n -1 “n b n
g = (1 + ) +VF Vv =q =A( == + —= ) +==E
n hn-l 30n ! n+l % hnB %
' qn+lh3x
F=hdyy “AD, A==0 ., * 6
D= (Gabhn-e-ssb)/(hm'a), B=abhn+38b ’
2
oo 3ozbhn +66b E = o +qn+1hn
T o h +38, - 3
ub n +38b n+l 2
£ . £ £ E £ 6y
: _ n-1 n - 1 n__ ./n b
Ry =Py 1 Gamet *360 *F UFpw Vo " Al t g |
— 8 n n
Zshz(hivég./2
oi = 1
e
hy a;
The constants vik) , k=1,2,3 we obtain from the relations
(o) (1) _
OaVe  * Bavo = Ya

(1) _ (0) (o)

=1 .
Vi“'l - (aivi "Bivi.’l "Si) hi"’l’ (1-—13,11)
2 2 2
S O 1 RS 1 |1 B T R S W U
- 14 I
i 6 ay i 30,4 i 2 943 94
(o) - (0)
N A hn-l(qnvn 9n-1Vn-1 )
L2 7
n n=1 n 2 gy Tpoy
R S S R
= g *ts)
n-1 n
o (2) (o) _ (2) __(2) (3) .
.cj‘_v:L + qivi = fi' vy =V +hn—1v1=.1’(i—1'2'“"n)
(2) (3 (o) (1) 2 (2)
=One1 Vg Fhpv e, (v + vy Thpyth v TT/2 4

3.(3) -
* hnVn /6) = LY

(k) _ (k) __ (k)

Similar to [2] it can be shown that z; =y, vy sa-

tisfy the equations



h (o) __y (@) .y ,10) (©) _ ., (i=0,...,n)

(3) i 32501 FhEe Tmy%ia =Yy
2 1 .
by = o ATt ~o HnTt ST LN C S RN
2 -1
bo = 01 B0,
_ 60 A T
q)n = g¢é2)hn1+¢l(11) _%“_[nrn L - h B _0_2 (E —A'C)]
{2)
(2, (2) {o) 2 Nj-1 ’_‘i _vi”
n; =y, (ci 1), \1) +hy (6“1';‘ + H c )
h, ‘h, ,. N, n,
(1y _ (1) i-1 o (2) Bi-1 i-1 i
P e T U S
- (2) (o) o (o) 1)
b= - n+1"’n+1 +qn+1“’n+1' Vp = OVl ~ bwn+1
(9 )
(k) _ 1—1 _
i oy R042), vy <8y <Xy,
(o) (1) _
(4) ,(y,aZo + Sazo = 0
q (o) , {03
(1) _ (1) i-17i~-1 1%i (1) ‘.
(5) z; z, 1+ 2 ( 511 + 7, ) + ¢i , (i=1,...,n)
(o) _ (o)
(6) 123 0 T ByZyp thy z{ll +¢;2), i=1l,...,n)
o 2P = (g vz 67
\ (3) (2) .
@) 2y =l —2{2) gDyt
(2) (3) (o) (1) zz(z)
(o 1
(9) cn__u( +h oz “7)+q nH(Zn +h z __-2—_ +
22
+ ) = —nn_l =y

THEOREM 1. Let 60.°h? qa,
i Ti-17d

andiat leats one of ) (k=i—1,i,i+l)(q_1=0)(i=0,l,...,n) is

>0, 0.8 <0, o B >0

different from zero. Then the matrix of the system (2) is

nverse monotone,

-COROLLARY 1. The condltlon 60 =h >0 in theo-

1719
rem 1 we can be replaced by q; (h h l) +6 >0,



135

THEOREM 2. Let the boundary value problem (1) has
. . 4
a unique solution y(x) €C [a,b]. Let conditions of theorem 1

are fulfilled.
Then for Ba #0 the following holds

2 (k=0,1,2), 27| <mn

1209 <mun
and for g_ =0
a
[zik)j_imh {k=0,1,2), |zi3)]_iM , where M denotes

different constants, independent on h.

Proof.
_ By 9 (%9505 gta g 0p)th ,(Qapytagp0,)
(10) A, ——ki+5Li—mi = 3 >Mh
+ 93-191%+1
(i=1,...,n)
B, (B,- )
_ Po'P1THy
(11) AO = R aa >Mh
[e]
h q a
1 n-1,"n n-1 =1
=—=(g_~ B Uat 3 e R
(12) An hn(Bn un)+ 3 (Gn n_l) VF ~ >Mh, M >0
From (10),(11) and (12) we obtain that |[A™'|]< —L1— <Mn™’
i

A is matrix of the system. (2). +
Since lOi“ll.iMhz we have lwil =0(h3) and then

=1 2
12| <[1a™ (] Ju | <mn
The estimates for ]zik)] (k=1,2,3) we obtain from relations

(4)-(9).

THEOREM 3. Let h =h=const, B_==0and the conditi-
ons of the theorem 1 are fulfilled. Then

1289 < 5 29 <un®s (20| <mn, (em1,2)

Proof. A simple calculation shows that inh_lB,
where A is matrix determined by {(3) for i=1l,...,n, and zéo)=0
B ='{bij} {i,j=1,...,n) is tridiagonal matrix with bii=2,

b =1, {i=2,...,n), bi+l,l=_l (i=1,...,n-1).

’

i-1,1
The solution of the system



~ilnti-i)
== .
3
}zio)]_iui we have Izio)l_iul =o(n?y, Izéo)lliun =0(h”).

Then form (3) for i=2 we obtain z§°)=0(h3) and then by in-

duction we can conclude that |z£°)|=0(h3) (i=2,...,n). The
estimates for derivatives we get from (5)-(9).

Bu =w, w=max |y, |h has the form u, Since
i

THEOREM 3. Let B8_=0 and h_=Mh®. Then
4.

1239 <un™ (k=0,1,2,3).

Proof, See [4].
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MESH CONSTRUCTION FOR NUMERICAIL SOLUTION
OF A TYPE OF SINGULAR PERTURBATION PROBLEMS

Relja Vulanovié

\BSTRACT 3

‘he singular perturbation problem (1) Zs consideved. It is
wolved numerically by clasgical difference schemes on a non-
niform mesh, The discretization mesh is construced in a

pecial way, which gives linear convergence uniform in small
erturbation parameter.

KONSTRUKCIJA MREZE ZA NUMERICGKO RESAVANJE

JEDNOG TIPA SINGULARNIH PERTURBACIONIH PROBLEMA
Posmatra se singularni pervturbacioni problem (1) koji se ve-
gava numeridki pomodu klasidnih diferencnih Fema na neekvi-
distantnoj mre3i. Mrefa diskretizacije se konstruide na spe-

eijalan nadin, tako da se dobija linearna konvergencija uni-
formna po malom pertuvbacionom parametru.

1, INTRODUCTION

We consider the two point boundary value problem

(ta) L u:= e2un +xb(x)u’ ~c(x)u=£(x), x €I=/[0,1]

(1b) u(0) =U, u(l) =U,,

with basic asumptions
b,c,f €C2(I)
b(x) >28 >0, c(x) >y >0, 2b(0) <c(0)

0 <g < .
€ <€,

14

This problem was solved in [2] by a speecial method
which gives linear convergence uniform in small perturba-
tion parameter e¢. Our method seems to be samewhat simpler.
It is based on the idea of Bahvalov, [1], that was genera-
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lized in [3] and uses a special mesh construction. We also
achieve linear convergence uniform in e but with less con-
straints - in [2] it was assumed: b,c,f ecsiI), 3b{0) <c(0).
Now we shall give some estimates for the derivatives
of the solution u, eC4(I) to the problem (1). We use the
result from Theorem 2. from [2]. Each positive constant in-
dependent of € and of discretization mesh will be denoted

by M.

THEOREM 1. For the solution u. to the problem (1)
the following estimates hold:

@ JulP o] e v Fep-a( 9,

i=0,1,2,3,
where i” = max(0,i-2).
Proof, Using the same proof as in [2}, we obtain

3 a0 ama rétexpi-ni/e?)y, i=0,1,2,

X
where h(x) = { tb(t)dt. We use this inequality to get (2)
o
for i=0,1,2 . This part of the proof needs the asumption

u, eC4(I) and 2b(0) <c(0).
Let us now obtain the estimate (2) for i=3. Differen~-
tiating both sides of (la) twice, we have

ezuIv + xb{x)u™ = g(x),

where, according to (3):
lg{xd ] <MQ1 +éﬁexp(—h(x)/52)).

Now it follows

X

u(x) = exp(~h(x)/e%) [u(0) +¢2 [ g(t)exp(h(t)/c?)at].
o

Since from {2] we have |u”’(0)|_§Me"3, we get:
[u”" " (x) |<M(A +B +C),

with

A = €_3exp(—h(x)/€2) ’
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-2 % 2
B= e ° [ exp((h(t)-h(x))/eT)dt ,
)

Cc = eﬂqx exp(—h(x)/ez) .

Now we have
=3 2
A,C <Me exp(=-B{x/e)”)

and, see [2],
B < 2By (1 —exP(—By2)), y=x/¢ .

Hence,

B <Me™t

and the theorem is proved.

2. THE MESH CONSTRUCTION

Let us denote by g a fixed number, q ¢ (0,1), indepen-
dent of € and take 0 <a <q/eo. Let for t e [0,q):

o) = t/(g-t), w(t) = aep(t).

We have ¢(k)(t) >0, k=1,2 . The mesh points are given by

X, = A(ti), ti = i/n, 1i=0,1,...,n,

where n ¢IN, n >4/q, and

(e, t €0,
Aty =+ )
fyla) +9 7 (a) (t=a), telo,l]
Here (o,P{a)) denotes the contact poeint of the tangent line
taking the value 1 at 1, to the curve y(t). Since we have
ag <gq it follows ¢ (0) <1 and o € (0,q) uniquely exists. For

o We can get:

o = (q-(aeq(l—q+as))1/2)/(l+ae)



0

~ote: The function A(t) which we give here is one of the
class of functions that was constructed in [3] for a diffe~
rent type of problem, namely - the problem (1) with b(x)=0.

On this mesh we form the discretization of the pfob-
lem (1):

._zl 4 P = = "1
(4) Lhui.—e D'ui+xib(xi)D uy c(xi)ui f(xi), i=1,2,...,n~1,

Un =.U1, ‘
where
n = - . 4
Dfuy =200y y gy (Bythydugthgug AR, ) (hydhy D)
Dfuy = (g =) /hy gy

. FX LK, i=1,2,...,n.
hl i 1_1 1 7 7 I

‘3. CONVERGENCE UNIFORM IN e

Because of c(x) >y >0 we can easyly get that the sche-

me (4) is stable uniformly in e, see [3], for instance.

Now we shall state our main result.

THEOREM 2. For the solution u_ to the problem (1)
and for the solution u, to (4) we have

1 .
[u (xi)=ui|_iM oo i=0,1,...,n.

Proof. We only have to prove consistency uniform in
€, i.e.
1 :
(5) le, | <M 5o i=l,2,..0,0-1 ,
where
ry = Lyu (x) ~(Leug) (x )

Let v, =exp(-B(xi/e)2). We have
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1
(6a) lri{ <M = (14P,+0Q.),
with
- 1
(6b) Pi = A (ti+1)E Vil v
_ . -2
(6¢) Q= A(ti)A (ti+l)s vy
Another estimate for ry is
2 Xy
(7) Iri} <M(e tvy g tEy HT vi) .

The proof now follows the same way as in [1] (see [3]
as well).

(o}

1 We first consider the case ti— >o. Then

1

we have x >A(o) =aep(o) and

i-1
2,2
Vi __<_Vi_1 f_exp(‘Ba ¢ (o)) .
Because of A(t), A7(t) <M, t eI, we conclude
‘ Py sQ; <M,

and (5) is proved in this case.

o 4
2”7 Now let tig <o and i1 295 -« Then ti4 <9 and

d mti+1-3% (g nti_l). From (6b) we can get

< .
Pi_a ¢ (t

I A

1417 Vi

t
- 2 -
< M(q-ti_l) exp(~-Ba” ( Q%Ei——

)?) <m

Similarly, from (6c) we have

2 . ‘ '
Qi_ja ¢(ti)¢ (ti+1)vi_§M
and (6a) give us (5).

o}

3 The last case is

q-F <ty <o
From this inequality it follows

4
q=-a <z
and



(8) Ve <m L,
n

because

q-o> Y O-a)ag e

4 .
Now xi_l'>ae¢(q % Y, (notice g -% >0), and we get

(9) v, ; <mMmi |
i=-1 — n

Similarly:

X, o
10 - 1
(10) evif-MV/VifM_n"
For‘xi we have

X, A(ti),ix(timl) Mooy

and
A(ti_l) <i(o) <M/E ,

hence, using (8) we get

(11) X, <M‘£
1 n

Now from (7-11) it follows (5) and the theorem is. proved.
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AN ITERATIVE SOLUTION OF SOME DISCRETE
ANALOGUES OF A MILDLY NONLINEAR BOUNDARY VALUE
PROBLEM

Dragoslav Herceg, Liiljana Cvetkovid

BSTRACT:

n this paper we consider numerical solution of the system of
nonlinear equations A(x)x=BFx by the iteration xoeqmn,mk+1:

:A(xk)—lBka, k=0,1,... . We apply our main result on some

discrete analogues of a mildly nonlinear boupdary problem, which
ave given in [1]. The results of [2] and [3] are the special

cases of ours.

ITERATIVNO RESAVANJE NEKIH DISKRETNIH ANALOGONA BLAGO NELI-
NEARNIH KONTURNIH PROBLEMA. U radu se posmatra numeridko re-
Javanje nelinearnog sistema jednadina A(x)x=BFx iterativnim

postupkom moe.m", xk+1:A(mk)"lBka, k=0,1,2,... . Na& glav-

ni rezultat primenjujemo na neke diskretne analogone blago
nelinearnog konturnog problema kojgi su dati u [1]|. Rezultati
iz [2] < [3] sadrZani su u na¥em kao posebni sludajevi.

1, INTRODUCTION
We shall consider a system of nonlinear equations

(1) A(x)x = BFx,

where A(x), Beimn’n (= set of all nxn real matrices) and
where F is the nonlinear mapping ofIIRn into itself.

The i-th equation of (1) reads

e~

(A(X))in- =

5 Bi‘(FX)j .

1 J

I >3

j=1 J
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We abreviate this as

((A(x))il,..., (A(x))ii,.,...,, (A(X))in)=

(Bil"”’Bii’""'Ein) v
where we shall l;;;e out zero entries and where we shall wri-
te common factors of the entries of the respective matrices
in front of the prentheses. The diagonal elements are under-
lined.

The iteration which we shall consider for the soluti-
on of (1) is . '

) x%em®, aMxM-mm®, k=0,1,...

If A(x) is regular matrix for all x e R” , the iteration (2)

can be writen in the from

(3) Ler, From®, x=0,1,...,

where Tx==(A(x))’lBFx.

In next section we shall prove under certain assump-
tions on A(x), B and F that T is contractive. Then the conver-
gence of (3) follows from a well-known contraction-mapping
theorem.

We apply our theorem to some discrete analogues of a
mildly nonlinear boundary value problem of the form (4).
These schemes ¢ccur frequently in the literature, see [1].
The special case of our theorem for the schem (5) was con-
sidered in [2] and [3]. The assumption in [3] was stronger
than the one in [2].

For any step wddth h= (n—-l)‘l, n>2, neMN, we defi-
ne the grid Ih= fti= (i=1)h: i=1,2,...,n}., For the numeri-
cal solution of problem

(4) ~u"+qglu)u = £(t,u), te [0,1]
u(0) =u(l) =0,

we form the next discrete analogues of form (1). Let P is the
nonlinear mapping of HJ] into itself which assigns to x e R"
the element Fx ¢ R" whose i-th component is given via

(Fx)'i = f(ti,xi), i=1,2,...,n.

The matrices A(x) and B are defined by
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(5) h_z(-—l,2+h2q(xi) ,=1) = '\_1.) for i=2,3,...,n-1, (second

srder approximation),

2
(6) T3 (1,-16,30+12h q(xi),-16,l)=(£), for i=3,4,...,n-2,

(fourth order approximation), and second order approximation
for i=2,n-1 as in (5),
-2
h
(7 780

5,...,n-3, (sixth crder approximation), and fourth order ap-

(~2,27,-270,490+180n" q(x ) ,~270, 27,-—2)—(1) for i=4,

proximation for i=3,n-2 as in (6),
and a fourth order unsymmetric approximation

-2
hT2~ (-10,15+12h2q(xi),4,—14,6,—l)=(_1) for i=2,
h2 2

B (-1,6,-14,4,15+12h%q(x,) ,~10)=(1) for i=n-1.

In (5),(6) and (7) we have (i)=(g) for i=1,n.

The solution x= [x,,X,,.. .,xn]T e R" of (1) is the nu-

merical solution of the boundary value problem (4), i.e,
xi&u(ti) , i=1,2,...,n.

" THE CONVERGENCE ANALYSIS

Theorem.  Let A(x) = [a, (x)] e R " {5 inverse-mono-
tone matrix for all Xe R” and Zet BF is Frechet-differentiable
in Rr" . Suppose that

n

max f [ Xy | <M, [ BFx]| < M, |l (BF) “(x) ||, < M,
1<1<n k=1 j=1 - -

Il A—l(x)Hwia, eran, 0L2M0M+ otM1 <1,

Then the equation (1) has a unique solution and the sequence

1 s ,
x2,x xz,..., generated by (3) converges to this solution.

3 2

Proof. We shall prove that || T (x) ]| < 1, where
T°(x) is Frechet derivative of Tx =A(x) 'BFx. Let C(x) =
fcij(x)] =a(x) ! and let ye R" . From [3] we have

T (y) = (C{x)BFy) "{y) + C(y) (BF) "(y) . -
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Since || c(y) | <o, Il (BE) (y) [l < M, it follows
I cty) (BF) "(y) ||, < oM.
Bai. n.n
Let G= {gijj = (C(x)BFy) “(y), H,= |>5-}-{—1 ler"™™, p=1,2,...,n.
Then
VI y B (CH. CBFy)
= _ik 7 (pF = .. (BFy), = (CH, CBFy) ,
934 k£1 S (BEY) kZl(CHjc)lk( Y 5 CBEY) 4

Since C(y) > 0, it follows

max ?Ig

n
l<i<n j=1 ij[ < mex ) (C‘H5|C|BFYI)i -

T l<i<n j=1

max (C ?]H.IC[BFy.[). =] ¢( §|H.!):|BFy; I, <
i<i<n  j=1 J * j=1
el 113 1m] 1 liell, 1 Beyll,, <o,

3=1

Now we have

T i, iotzrdMo+ aM, <1

Theorem is proved.

APPLICATION TO THE PROBLEM (4)

We apply our theorem con discrete analogues for (4),
which are defined by (5),(5) and (7). First we summarize some
properties of the matrices A(x) and B=diag(0,1,...,1,0) as
defined by the schemes (5)=-(7). The functions g(t) and f(t,u)
are assumed to satisfy the conditions

. gecl(mr), fecl(xxr)

. £

la“(v) | <m, teRr, |f(t,u)]<n_, [g}.

(8) -
=A<u<qg(t) <h a,r telR,

(t,w) ! <My, (t,u) eTx R

for some real u, where ) and q+’depend upon the scheme as
follows. Let A, is the matrix A(x) for g(t) =0, t e R . Then
A(x)==AO-+Q(x), where Aoeimn'n is independent of x and Q(x)=

= diag (O,q(xz),.,a,q(xn_l),O). The matrix A is inverse-mono-

tone, [1], and there exists the smallest positive eigenvalue

A to the eigenvalue problem on = ABx. From 1] we have that
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)4-D is inverse-monotone for any diagonal matrix D whose

-2

.agonal elements are all in (=X, h q+]. Next table schowvs a

It of this type where q, =~ means that (-, u~2q;J= (=X, ).

Scheme (5) (6) (7}

q, 0 3 1/18
'ow) from (8) follows that A(x) is inverse-monotone and
0§A(x)_li(Ao+uB)°l for xe R"
-1
2™, <o

Loed

here

I (g +um I

epends on the scheme. Since

n n ayy
max y ; ]-BX (x) l
l1<i<n k=1 j=1 3

It

max ]—~-(x)l =
l<i<n Xy

max ]q’(xi)[<M .

1<i<n N

the assumptions of our theorem are satisfied. Then for any of
the schemes (5)-(7) there exists the unique solution and the

sequence xo,xl,xz,,,. generated by (3) converges to this so-
lution.

For any of the schemes (5)~(7) we have A(h) <x, [1] ,
where

A(0) =12, A(h) =2h"%(1-cosTh), h>o0.

This implies that -) <y ig satisfied if‘u > =X (h). Now we can
give easily computed estimates for h > 0 such that the condi-
tion u>-A(hy holds true for the schemes (5)-(7) if and oply if
u >—H2. We note that A(h) is monotone decreasing as a func-
tion of h and that A(h) >8 for he|0,0.5]. So, if u > -8, we
have p > ~x(h) for all he |0,0.5|. The restriction on h are
described by

-x (h) <u5h”2q+

-1 )

The computable bounds of [[(Aj+uB) "Il =~ are given in [1]. So
we have
-1 1/8 for pu=0
|
N e R
° - d-u 1 ‘for—ﬂz <u<o0,

where
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1

d= (ucos(0.58)) Y, 0<B<T, uh®=2(1-cosBh) .

Now we can easyly see that the condition azMMo-+uMl <1
reduces to the case when 0 =1/8 for u=0 and a==d-u'l for
—H2<11<O.
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. ONE WAY OF DISCRETIZATION OF CHAPLYGIN®S METHOD

Dusan D, To3ié

BSTRACT :

1aplygin®s method ( described in [1] and [3] ) is an ana-
ytic and iterative method for two-gided approximation to
1e solution of ordinary differential equations., This meth-
i is difficult for practical applications in analytic form.
1 this work one way of discretization of Chaplygin?s me-
10d is proposed. Chapllygin®’s approximations are calcula-
2d by using the interpolation and the numerical integrati-
1, Some examples with the cubic spline interpolation and
impson®s rule are presented.

iIDAN NACIN DISKRETIZACIJE CAPLIGINOVE METODE. Gapliginova
~2toda ( opisana u [1] i [3] ) Jje analitilka i iterativna
metoda za dvo-stranu aproksimaciju redenja obiénih difere-
ncijalnih jednadina. Ova metoda je teSka za praktidéne pri-
mene u analitidkoj formi. U ovom radu predloZen je jedan
nadin diskretizacije Capliginove metode. Capliginove apro-
ksimacije se izradunavaju koriSéenjem interpolacije i nume-
ridke integracije. Navedeni su primeri sa interpolacijom
pomoéu kubnih splajnova i integracijom pomoéu Simpsonovog
pravila.

1. INTRODUCTTION

Tet us consider the initial value problem:
(1) y' = £(x,3)y ¥(a) =7, .
We seek the solution y(x) of (1) om the discrete point set
Gh = '( xi' Xi = 8 <+ ih’ i=°,.-’.,n' b-’a = nh } e Suppose
that the solution of (1) exists and that the conditions for
the application of Chaplygin’s method are satisfied ( see
(1] ). If we denote by uk(x) and vk(x) upper and lower bo-
unding Chaplygin®’s approximations order k, it holds ( [1] ):

~C
(2) xenll::]fbjluk(X) - n (ol < pe ( CeRr" ).

In [4] and [6] some shortcomings and problems related to
Chapligin®s method are pointed out. However, if the discre-
tization of Chaplygin?s method is made successfully, there
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.re sgome of cases where this method méy be useful ( [5] ).
For example, the error estimating in some of numerical me-
thods for (1), may be based on Chaplygin®s method.

2, DISCRITIZATION

If we introduce the following notation:

 EGrw(x))
(5) pk(x) Lo ___%L{__
) Q(x) = - £y vy (2 )£ (g my ()
- vy () =y (x)
and .

X X
() Ua®),b()) = em(-] a®e)( v, + [ (2Ct,b(0) +
(¢}

X +

a()b(t)) exp( kf a(2)dz)dt) ,
then we have: 0
(6) U, (%) = I(pp(x) guy (x))
(7 Vyep 1 (X = Tap(x) g7y (x)) o

The arising problem is to discretige the expression
(5). Suppose that the values uk(xi) and vi(x;), ( x;€ G)
are known., Performing the interpolation of functions uk(x)
and v, (x) on the interval [a,b] we get the polynomials
Puk(x) and ka(x). By using Puk(x) and. ka(x) we can calcu-

late uk(x) and vk(x) with some accuracy, for each xef[a,b].
This possibility allows using the numerous formulas for
the numerical integration in (5). We want to know the tru-
ncation error made when the expression (5) is calculated.The
following theorem is related to this problem,
THEOREM . If it holds:
(a) the values of the functions a(x) and b(x) in (5) are
calculated with accuracy not lesser than O(he), as h» 0,
(b) each integral in (5) is calculated with the truncation
error not greater than O(hs), as h» 0,
then the expression I(a(x),b(x)) may be calculated on the
set G, with the accuracy 0(hT), where r=min(e,s).
FROOF For x;€ G, (1= 1g0e0en ) we have:

i n
(8) a(t)dt = Sy + Ry + Ry
%o
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wiroa 3 Rl is the roundoff error and R, ig the truncation
error of numerical integration, According to (b) we have:

* h
(9 a(x)dx = 8] + o(n™)
X
0

where r = min(e,s). From (9) we get:

x.

i
(10) exp( - lﬁ a(x)dx)= ct . O(hr), as h 2 0,
~ 0

Let be:
(11)  glx) = (£(x,b(x))+a(x)b(x))exp( JX a(t)dt ).
%o

For the expression (5) we may write:

X X
(12)  I(a@,b(x) = exp(- [ a(®)at )y, + [ vt ).
%o 0

By using (19) and (11) ( for X; € Gy ) we get:
- h r
g(xj) ( f(Xj,b(Xj)) + a(xj>b(xj))( Cj + O(h ))
and according to {(a):
R < r
8(xy) = g+ o).

Now we obtain ( like as in (9) ):
X

ER
w _ ah
(13) g’ g(x)dx = Sg + Ry + Ry
° h T
= 82 + O(h ).

Finally from (12), (10) and (13) it follows that:

h, hoh T
It - =
(14) I(a(xiO,b(xi)) _‘C Yo * 7Sy + o(h™)
=1 + o(n’)
for x;e Gy, as h » O and the theorem is proved,

Denoting by uﬁi and vﬁi discrete Chaplyrin?s apopro~

ximations in the point x;e€ Gy, fron (), (7) and (14) we
have: h r
(15) uk(xi) = gy + o¢h™)
(16) v (xy) = vy + O(n®)

for k-th iteration. By using (2) , (15) and (16) we make

the following estimation:

n o h oy . G
Py Gy )=vy el < Jupgg=vis |+ 0(0™) + o



wus error estimation for the solution y(x) of (1) is based
on the inequalities:

(17) (%) < () < vy(x)

where xe€[a,b] and k=0,1;.00

%, NUMERICAT EXAMPLES

In the following examples we apply the results of the
previous section. As polinomial P, (x) ( i.e. Pv:(x) ) a
cubic spline is used. Thus, the functions from (5) are ca-
leculated with the accuracy O(hq)‘( gsee [2] ). We use Sim-
pson’s rule for numerical integration. Therefore, R1 =R,y =
o™ in (8) and (13).

EXAMPLE 1. It is intended to solve the initial value
problem
(18) 7' o= y2 = ysinx + cosx, y(0) = 0,
by the previous method, using a steplength h=0,1 on the
interval [0,1] o As the initial approximations we choose

(Similar results are obbtained for uo(xi) = sinx.

vo<xi) =

uo(xi) =

vo(xi)

s:Lnxi

sinx, - 0,014

sinxi + 0,01i.

sented in the table 1.
Table 1

0.1
0.2

U3
0,09983016
0,19864265
002954291%
0.38919984
0, 47899265
0,56388187
0.64298689
0715479614
0.78059514
0.83762731

!
0.0998%686
0.1986%41
0,29561211
0,38963886
0,47986551
0656541504
0,64547439
0.71928375
0,78615534
0,84547896

=h
V23
0,0998%%52
0,19866954
0,29552049
0,38941868
0.47942589
0.56464278
0,64421786
071735594
0.78%%261%
0,84146881

(i = 041,000,10)

1

Fh.

2i
0.,09983291
0.19866895
0,29551989
0,38941806
0.47942527
0.56464220
0,64421 744
0.71735601
0.783%32729
0,84147252

- 0,1i and
4 Oeliy 1 = 031y000,10.) The results are pre-

The theoretical solution of (18) is y(x)=sinx.
numerical results in table 1 are according +to
retical consideration in the section 2.

The
the theo-
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EXAMPLEEZ. Cosider the initial value problem:
19) ¥ = =2+ y° -32.1 , y(0) = 0.1,
m the interval [0,1] . Let be:

As the initial

In the table 2
are presented,

G, = {xil x; = 0.2i, i=O,...,5j .
approximations we take:

=2

6. ( l=1990e95)

]

uo(xi)
vo(xi)

i}

the numerical results obtained in 5 diterations
We give, also, results obtained by the

method Runge-Kutta with the truncation error O(hs)0

Table 2
X3 ﬁ5i gl Runge-Kutta
0.2 "!4'06109031 —406105720 “‘4059’4‘60‘ LN-}
O.Ll' “505755214 "505754871 “5.116190 ®a
0.6 -’5.6738443 “5 06758269 “56595150 LX)
0.8 =5,6625736 =5.6625541 =5:5071%600
1.0 506339439 =~5.6%39192 =5653980. .«

The numerical results presented in this paper ( and

a lot of others numerical results ) are obtained on the mi-
crocomputer COMODORE 64,
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ON A CONVERGENCE OF THE DIFFZRENCE SCHEMES
FOR THE EQUATION OF VIBRATING STRING

Bo&ko 8. Jovanovié , Lav D. Ivanovié

ABSTRACT:

In this note we inspect the convergence of the difference
gschemes for the equation of vibrating string, for the case
when a generalized solution of the homogeneous boundary va-
lue problem belongs to a Sobolev~Slobodetsky space. The re-
sults for the elliptic and parabolic case are presented in

(2, 3] .

O KONVERGENCIJI DIFERENCIJSKIH SHEMA ZA JEDNACINU ZICE KOJA
TREPERI. U radu ge igpituje konvergencija diferencdijsiih
shema za jednadinu ¥ice koja treperi, u sludaju kad genera—
lisano resenje konburnog problema pripada prostoru Sobolje~
va-Slobodeckog. Analogni rezultati za elivtidki i paraboli-
gki sludaj dobijeni su u [2, 3] .

We will consider the first mixed homogeneous bounda-
ry value problem for the equation of vibrating string:

2 2
g4u _ou + £(x,%) ’ (x,6) € Q = (0,1) x (O‘)T] 5
2 2
ot Ix
(D) yo,) =uw(l,) =0, e (0] ,
u(x,0) = 23%5191 =0 x e [0,1]
t .

Throught the note we will assume that the generalized solu-
tion of (1) belongs Lo a Sobolev-Slobodetsky space WS(Q),
1 <s <4, [4]. For such solutions one can construct a li-
near extension for t < O remaining in the same clags [#].
By ”"‘IS,Q we will denote the norm and by l . 1s,Q the
senior seminorm in WS(Q);

Pick a nonnegative integer n and let h =1/n. e
define a uniform grid Wy, with the step h over (0,1).
In the same way we define a uniform grid W with the step
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= 1/(m+0.5) over (-0.57, T]  and put Qe = W rWg -
e will assume that clh € T < 02h 7 Cq2Cp = const » O .

If v is a function defined over Qu. by vJ we will denote
itg restriction for t = (J-0.5)%T .

e introduce the difference operators Vs Vg Vg
and vy in the standard way [(6]. By || - Hh and  (.,.)y we
will denote the difference analogs of the norim and scalar
product over LZ(O,l) . In the gpace of discrete functions,
which are defined over w,  and which are eaqual to zero o-
ver the boundary knots the operator:

Av = -ve
ig selfadjoint and positive definite. Therefore the norm

Hv” /\_1 - /\—lv , v)l/E

can be defined. Also the norms over Q1 will be:
1 k+1

vl é,zo,h = ax Al vy + 0.5 ”V;g vy ) ’

ol $°L 4 = nax (| Pl g+ 051V )

Due to the fact that f(x,t) need not to be continu-
ous, it seems natural to approximate f£(x,t) by some mean
values over Q.. Let T be Steklov's mollifier defined by:

0.5
Teg(x) = fg(x+hx')dx’
-0.5
and 1%g(x) = g(x) , Trgx) = (M lgx) , k=1,2,...

By T e will denote the product of % over x, and T

over t .
Then we will approximate (1) by a weighted differen-
ce gcheme (a = congt > o) :

j+1 ' j— 2

V%E = a V:Jci + (1-2a) VJ—L +oa V}Jc?cl pomee pd
a .
(2) J-o for x =0 and x=1,

vo = vl =0

1.7 + .
hen u ¢ ‘I,,(Q) < s .s 4, we will denot

?
= U - VvV ., Punction 2z is %



i j+1 J al 3 3
z%;e:azg§+(l 2a)z_+az + P q’xi?

z0 =0 for x=0 and Xx=1,
z° = u(x, -0.5 ),

zm = u(x, 0.5 %),

where

@d = 1012 I a udtl 4 (1-2a) wl 4 g wd™t )

P o ud - 200 .

When u.e WS(Q) <8 ¢3%, wewill denote & =
= ’I‘2 O -V . I‘urthe‘r’more, we will agsume that the soluti~

on u(x,‘t) can be extended outside Q so that the extension
is odd over x, and remaining in the same clags. The functi--

~

on 2 1is defined over the grid th satisfying:

2%35 = a 23+1 +.(1~-2a) 23_ + a %g}, QPVX 5

2 =0 for x=0 and x=1,

20 = TE,O U.(X, ’"‘005 'C'))
sl - TE,O u(x, 0.5 T),
wvhere
$d = m0+2 yJ - Tz"o[a wtl -2 a)ud + a 13.3"1] .

Using the method of energy inequalities [6] one ca
prove the following a priori egtimates:
m

) [lfl$4)

J=1

> “2'”'3 ,° h

o . l mn -
I 2l -1 + [0+t + “"Z“‘?S’c”h ) .
5o1

The counvergence rate estimates in this note are

DG~

3 o the following generalization of the Bramble-Hilbzrd

Tormas,

LEMMA: et [s]” be a nonnegative integer, [s] < s g

[¢77 + 1 and let P be the set of polynomials of
spree g [8]7. IF n = Y‘l(U is a bounded, linear Ffunchi--
cual over |If,(f)) such that P[s]* e Kernel(?‘l) , then For

IR/AN
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Wh\o[ﬂzt”h*||Z~<“l”h+“'z Ceal, = 4z '11



every u € WS(Q) the following inequality is valid:
lq(u)l < C ‘uIS’Q R ¢ = C(Q,8) = conat .
The proof of lemma follows from the Dupont-Scott
theorene [1]
Functionals ®.= » Vi » _zf; and (z}oc + z}lc) are bo-
unded and linear over WS(Q) for s > 2 while P5 <
< Kernel( 9 <) , Py < Kernel( ‘Vt%) » Ppc Kernel(zg) R

Ps e Kernel(z;z + 21y . Usiné the lemma one obtains the fol-

<
lowing estimates:

m .
) vy el [ el <07 g, 2cssn
51
(6) “ZE“h + “Z}OC”LZ}];”h < C ne=1.5 luls,QT , 24853,
where Qg = (0,1) x( -0.5 ¢, 0.5T) . Using (3),(5),(6) and
) [ulg,q ¢ O T ull g > k=012, cevy
where
n® 5 0 g a<0.5,
F(h,a) = { 1w °|1wmn| , a-=o.5,
02 , O0.5<acl

(see [5]) one obtains the following convergence rate esti-
mate for the difference scheme (2) :

. ° ,
Rt ! T R T

N

Similarly from the lemma and from (7) one obtains:

m
(8) ” 29 4 anh + ‘L‘Z I C?’:‘cHhs ¢ hs'"l" u”s,Q , l<ss3,
J=1

@ 22|

where

2¢ s

A
W4

AL T 5 Qe 1

1 x”
w(x,t) = f uw(x’,t) dx° -~ f f u(x’,t) dx’ dx” .
0 o o

- c .
From (4),(8) and (©) expressing w by wu, one obtains the
following convergence rate estimate for difference schere
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2)
o) s-1 .
!lﬁﬂé,m,h <Ch “lu”s,Q bHf”b(s),sﬂloQ) ’
1 <s g 3, where p(s) = max {0, s-2} and || fnp,q,Q
the norm of the anisotropic Sobolev-Slobodetsky space

W8 3(Q) = T,(0,T; w8(0,1)) n wi(0,T;5 L,(0,1)) (see [4]).
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APPROYIMATION AND REGULARIZATION OF CONTROL
PROBLEM GOVERNED BY PARABOTIIC BQUATION

Lav D. Ivanovié , Bosko S. Jovanovid

ABSTRACT:

4 finite dimensionsal approximation of distributed control
sroblem governed by the heat transfer ecuation is conside-—
red. We prove that a sequence of finite dimensional problem
solution converge to the original golution. Also, we con -
struct a minimizing sequence which converge to the optimal
rontrol.

1PROKSIMACIJA T REGULARIZACIJA PROBLEMA OPTIMALNOG UPRAVLJ A-
NJA SISTEMIMA PARABOLICKOG TIPA. U ovom radu razmatra se ko-
natno dimengiona aproksimacija zadatka ovtimslnog uprevlija -
njs sistemom opisanim jednadinom provodjenja toplote. Doka -
zuje se de niz konadno dimenzionih reSenja konvergirs ko ori-
ginalnom redenju i vrsi se regularizacija tj. konstruile se

minimizirajuéi niz koji konvergira ka owntimalnom upravljanju.

e chall congider the following ontiwm~l control »nro-

blem:
(1) J(v):\g flulx,t),u (x,t))dxdt — inf
(2) w= Ao v, (1) € ag=(0,1)%x (0,1
(3) u(x,t)=0 , (x,0)E Q xo, T , S =(0,1)°
(4) u(x,0)= vl(x) y xe &l .
Tt is well known [5] that if v & ng’r(QT) ,
v e;H2r+1(§Q) then exists a unigue solution of (2),(3),(4)

2(r+l),r+l(@ )
\‘m

unwe | for r > 0 and the following estimate
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valids
(5) “u“ H2r+2,r+l<(,}T) < o “vO” HZI"I‘(QT)*“"ﬁ H21’+1(g:.)).

2T, N,
We shell denote v:(vo,vl) and. U:{:VEiXT:H ! (QTL/
>(H2r+l(g})g HVllesg R . Throughout the note we shall as-

sume thoat £ is arconvex function and
(€) If(ao,al,aZ)—f(bo,bl,b2)|fgég(ao,bo) %i%{ai—bi

vihere g(ao,bo) is a nogsitive bounded function over bounded

sets,

Terma. The solution of (1)-(4) exists.

Proof. it is easy to show that J{u) is lower weakly
semicontinuous function over U and U is a weakly compact
set in X . By [7 p.47] follows the lemma.

To solve the problem (1)-(4) we shell construct =a
sequence of finite dimensional vroblems of nonlinear vprogram-
ming E3j, [7] o

Let E;lh'be a uniform grid with the sten h=1/n over
(2 ond 1et Wy be » uniform grid over (0,1 with the
step T =T/m. In this note we shall assume that constent=:
¢11¢, =0 exists such thot clhzé;stéczhg.

In the set of discrete functions over Qh,Z :QEI3<QQT:

we shell introduce the following norms:

l[Yllo’O,h=(Y::%;i 0,25||yj¢1+ yjlii )1/2

=1 2 . ]
703, 0=C 3 T2 [ 672D, | 222

- 5 i :
7l o T Sl o252l e, |

025 || () 1 2 |1/

S h
%

o
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here VJ= y/tzjt° ¢ vned the standard notestion [6] .

Let T be a Steklov mollifier [4], [6] . By T1°™2
we shall denote the product of ™1 over x, and T'2 over x,.

Tm ST, M L °
By 177273 we shall denote the vroduct of Tml over Xy s

2  over X, and T'3 over % [4] .

The problem (2)-(4) will be approximated by the dif-

ference scheme of alternating directions ]}] 5 [5] 2

0. . o, oL
(7) Lly:(yJ o 5—-y3)/o°5’[j “'V3r+§); 5_yi _ - ﬁgm 5
11 272
. l .+ . . . . . .
(8) L2yr(y3+ +9*° ) fo57 —yi+% 5_yi+§ - vg+o 5
171 272

o)
(9) y =%

J+0.5 o ' '
where y denotes the value of y on the auxilisry time sli-
ce t:(j'é‘OoS)ft 9 O’g+005:(T2’2’lVO)J+O.5 and .v_l___ T2,2V1.,

Useing (5) and the discrete solution estimates [4]

from Dupont-Scott theorem [ 2] follows

(1o) “anﬂqhé;CIﬁr“VIX o<rsl

T
(11) HZWIl,o,h.ééC h?r+1,llv"x 0L 0.5
az) e lly,0n e n” vl -

o

The cost function J{u) will be anproximated by the
following ecquation :

., 2 v |
I (y) = Z N T Ely,y, Ve ) .
“h 1oz

Now we can formulate the sequence of Tinite dimensi-~

onal nroblems :



a3) T i
n

(14) Loy= w, ’ L2y= WO y =Wy

where the operators Ll,L2 are defined by (7),(8) and the
Pydys jorgel S
J = = = H °
set W {w (wo,wl) €Y, Hn X H Iw ”Yné R }

We denoted by Hﬁ’q,Hi the discrete analogues of the Sobolev

spaces Hp’q(QT),Hs(ﬁE) 10,8 € N-AU{OZ .
Since (13),(14) is the mathematical programming pro-"
blem one can prove that a solution y;% of (13),(14) exists,
Furthermore we shall construct operators Qn:X;a-Yn
and Pn: Yn —%»Xr by

o)

(15)  Q(v) = ( Qv oL (vy =12y 1P % v )

TP
09

(16) Po(w)= Cw oy ow)
— 2,1 - 3 .

where woe H (QT) and w1€ 1° (62) are the interpo-

lants defined in [1] .

Theorem 1. If the above assumptions are valid than

1im I:f = J,, = inf J{u) and for oLr<o.5
n —»od U
% 2r4l
(17) [T - g < cn :
Proof. Useing the technique developed in [:7] from
(12),(15),(16) one can prove that the conditions of +theorem
3. [j7 p.311] are satisfied so the theorem 1. follows.

Now, we shall introduce Tichonov functional [7] as:

Tn(w) = In(w) 4-g(n“w|l§n .
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Let wj’ be a sequence of discrete controls such

hat
> e %
4 <. -
T =inf Tn(w) £ 'l‘n(wn ) £ T+ ¢ftn°

W
n

Seqguences o(n and‘/ﬂﬁn are positive and lim o( =

. n-»0c0 N
=n£%%otfin = 0.
Theorem 2. If the theorem 1. is valid and if

2r+l
' = <0.
(18) n};m (hrl +L/£n)/(%\n 0 for 0<r< 0,5
than
i *y) = : - %y ool -
LLim J(Pn(wn )) = Is and _ 1im “Pn(wn ) - v l\Xr_O

where J(v¥) = Ty o
Proof. Useing the same technique as in [7] from the
estimate (11) follows the theorem.

Remark. If the cogt functional is of the form

J‘(U_) = g f(uyuxyux}{’ut)dxdt
T
than in (17),(18) 2r+l must be replaced by 2r . If the cost

functional is

Jfu) = é;f(u)dx dat
Q.

and if r=o than in (17),(18) 2r+l must be replaced by 2 .
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SOLUTIONS OF THE GRID LAPLACE EQUATION DEFINED IN CORNERS
Desanka P. Radunovié

ABSTRACT:

Solutions of difference schemes, defined on the rectangular grid for
Dirichlet and mixed boundary problems for the Laplace equation in corners
3f1/2 and 21 are obtained. From their asymptotic expansions it can be seen
that the orders of errors are 0(h®V /|z|YV ),v=3/2,2,3,4, and that in so-
nre cases the accuracy can be improved by the appropriate choise of the
grid parameters.

RESENJA MREZNE JEDNACINE LAPLACEA DEFINISANE U UGLOVIMA. Odredjuju se
reSenja diferencijskih shema, definisanih na pravougaonoj mreZi, kojima
se aproksimiraju Dirichletov i mesoviti granidni zadatak za jednadinu
_aplacea u uglovima 3%/2 i 2. Iz asimptotskih razvoja dobijenih resenja
sledi da je red greske aproksimacije O(h®™V /|z|“V ),v=3/2,2,3,4, i da se
u izvesnim sludajevima odgovarajuéim izborom paramebara mreze moZe pove-
éati tacnost aproksimacije.

In this paper, in a context of studies of an accuracy of classic
difference approximations of nonsmooth solutions of boundary problems for
differential equations, we obtain solutions and their asymptotic expan-~
sions of difference problems that approximate on the rectangular grid

2 = { (x,y) | x=mh, y=nh), m,neZ, h'=6h, h,6>0}

following problems: to find the continuous function v ,not identically
equal to zero, harmonic in the corner O<p<vf, O<r <= ({r,e) polar coor-
dinétes),v:3/2,2,3,ﬂ, equal to zero on the positive part of the x-axis
and on the line v, and which does not grow too rapidly at the infinity,

i.e.

1lim = 0.

po RV
Solutions of these problems, for corresponding v, are (from [2])

@

. i
v = CImz*v = C rv sin | C=oconst, z=re ",

v
s0, their first derivatives have integrable singularities at the origin.

For v =3 the initial problem can be replaced by the equivalent one,
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defined in the corner Q¢¢ 31/2, Ogr<eowith the boundary condition
%{ =0 on the line ¢=39¢/2. Similarly, for v=H4 the initial problem can
be replaced by the equivalent one defined in the plane with a crack,
where the crack is on the positive part of the x-axis and at the lower
edge of the crack the boundary condition —gl;- =0 is given.

Let us define the one parameter difference operator family in order

to approximate the Laplace operator (see [3])

A UZUe. +u. -oh? 1288, o> =1/2
o Xx 7y 2 Xxyy’ '

and difference operator families in order to approximate the boundary

conditions of the second type

Aapld U -Eu - o h? 1—*'—e:u on the line 34/2
vel=tg T 27yy T ¢ T2 URyy ’
and
2
Azuzuy ——92—h—‘1,1Rx - o h? 14'29 “x‘xy on the line 21

(for a>-1/2 A is the elliptic operator, [4]). Let us denote
= {(x,y) | (x,y)eq, 0<g<vi, O<r<=},
ro= x,y) | (,y)eq, e=vi, 0<r<=},
To= {x,y) | (x,y)eq, x>0, y=+0}, Fozrou{(o,o)} ,
L= (x,y) | (x,y)e8, x>0, y=-01},

Solutions of the following problems will be determined:

PROBLEM 1. (v=3/2) Au=0, (x,y)efsy, , %,J‘il&u/r‘“/’zo,
u=0, (x,y)ely, u=z0, (x,y)eTs,, ul(-h,0)=A.

PROBLEM 2. (v=2) Auuzo, (x,y)eR, , l]%rgou/r‘ = 0,
u=0, {x,y)ely, u=0, (x,y)el,, u{~h,0) = A.

PROBLEM 3. (v=3) A =0, (xy)efy, ,]f‘J;..H;u/r‘z” =0,
u=0, (x,y)ef,, Mpu=0, (X,y)eTs, , ul(-h,0)=A.
PROBLEM 4. (v=1) AU =0, (x,y)e8,, }{mmu/r‘/z =0,

u=0, (x,y)el,, MNu=0, (x,y)el,, u(~h,0)=zA.

THEOREM 1. The solutions of the problems 1-4, for cor-

responding v ,are



.

A a eLE[ql’l(E)eimE_1] ( eLE"Z1 yde
0 v ! 1
2qF(~z, ) ) (1—eL€)L+W(1—zleLE)1 -1/V 1=-zletg
. n>0,
ulx,y,) =
u(xm,y‘nl) + ZCOS%u(x_m,yan, n<o0,

lere m=0,+1,%2,...,
2) F(z) = JF, (

3 a hypergeometric function,

3) oz, = (VIO +e)(1+20) 1 = TV {VET+6)(1+20)] + 1},

L

1d
J[coszg + (1+6)(1+2a) sinZ% 1- esin%

Vicos £ + (1+69(1+20) sitP5 1+ 0sing )

Y alg) =

The proof is similar to the proof of the corresponding theorem for
square grid given in [1]. First we define problems 1. and 3. for
31/2 <9<2 1 by appropriate transformations. Then, making use of the dis-
crete Fourier transformation over the argument x, and solving the dif-
ference equation for the argument y, we obtain the Fourier image of the
solution. If we now apply the inverse Fourier transformation, we obtain

the solution in the form

2l .
fo(E) ["e™E - 11dE, ws0,%1,%2,..., n=0,1,2,...,
-1
(5) u(xm,yn)-2ﬂ
ot [nj img
fv(g)[q - 11dg, mO,i1,i2 vee, N==0,=1,=2

(for n=+0 and n=-0 we have different forms of the solution, as there is

a crack on the positive part of the x-axis). U, and ¥, are the Fourier
images of the traces of the solution on the lines y=+0 and y=~0, and

q(g) is the function given by (4). If we demand, for every defined prob-
lem, that the function (5) satisfies boundary conditions, we obtain the
problem of coupling analitic functions on the unit circle in the complex
plane. This problem can be reduced to the singular integral equation

1
‘*’(t) dt + cos ¥ f—-—‘f(—— = 0,
1 - xt
Vo
and its solution is

- - 1
v(x) = Cx~'2(1-x) Vzpl(%—%, 1——\;;%;x), C=const.
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Returning back to initial variables and using the given condition at the

point (-h,0) to determine the constant C, we obtain the solution (1)

THEOREM 2. The asymptotic expansions of the solutions of

the problems 1-4, for corresponding v, are

Av( ez )YV

UN(1-2 )F (=2 )07V
2/v 1

(l\)) hl,\) . 2—2(2 1/\))%2 1—.(2_%) [(1+62)

z

y )= Im (27V(140%) (14207 (1) 27

u(x n

m’

(6) -2 (140%) (1+2)T*Vr

2 24+2/V

(1+2u)]“/‘2“’[(1+92><1;6a>l;-'+2;@2-1)55__”0}+ O<—|§-|mv ),

where F(z) and z, are given by (2) and (3), and z::xm+Lyn:hB.

For the proof of this theorem, we obtain more convenient

expression of the solution (1) with substitutions ig:eLE and

z=(g-2,)/(1-2,¢)
_ Av( T4z WV -1 N Z+7Z, 0
(7) U(Xm’yn)‘"—ﬂ'ﬁv'z?ﬁ — Im‘Z{ﬂU-z) dlF(z) 4 (2) G=2)"1,

1+z,2
Imz>0

where §(z)=4(%)=q(E) and F(z):F[(eLg—zl)/(1 mzleig)]. The proof is
realised in two steps. In the first step we prove that the essential
contribution to the integral (7) is given by the integral in the close
neighbourhood of the point z=1. The contour of integration is destorted
and by estimating the integral for separate parts of the contour, we
obtain

’ Av( 1 1/V - _ _
8) U(Xm,yn)z—w—:,-gz—l;——;():él—) Imcfﬁ—z) /\)d[F(Z)e W(Z)B]+ O(’Bl N>,

for any N>0. v{z)=w(z)p is defined by the expresion

-v(z) _ ,.n Z+2;
€ 'q(Z)(1+z,z)

The curve C is C={z {Imv(z)=0} for zelz | |z~ 1}<6, Imz>0}, i.e.
C is contained in the close neighbourhood of the point z=1.

In the second step of the proof, the function in the integral is
approximated by the partial sum of the asymptotic series written for
z=1, and obtained integral is calculated analitically. With regard to
the features of the function w, its inverse function z=z(w) for |w|<s,

exists. So, in the integral (8) we can use the new argument of
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v wtion w. We suppose some series representations as functions of w

and F(z). and after some estimates we have

v (1ez)=YV

(1+2 )
D o )

ihere the coefficients pk(v) are determined by the series expansion of

Ing § [0, () - )= py (=) plicr D)V 157K},

he function
1+Jz dz _ ©
) a'_ = Z

1+
P, vy = W™ g z)r(

le express'z by w and obtain
_ o2y 1 -2, 1/\)
P O( v =-2 ( 1 +Z, )

T2V (2 - 1) L) (1460) £ 4 266 -1,

-2(3-1/\))(
T+z, Z,

p2( \)) = =2
, k=
If we put these obtained coefficients in (9), as z=hg , we have (6).

The difference problem 2. we can define on the displaced rectangular

grid
o ={(x,y) [x=(m+e)h, y=nh’, m,neZ, h'=eh, h,e>0}.

Tts solution is given also by the expression (1) and its asymptotic
expansion is determined by the following theorem

THEOREM 3. The asymptotic expansion of the solution of the prob-

lem 2., defined on the grid 96, is

o 2h ve 1. VI(1+63)(1424)], h
UOr V) =Tz Ry T4 *- 5le- — JZW
(10)
——[Be-us«/ﬁ 1+62)(14+20)] + (1+92)(1+6a)-— + 0 - 1] }+ o( )y
2 'le/z
where 2z=h(m+e+ing) =hg .
g with B,

For the proof of the theorem we put v=2 and replace

in the expression (6), where B=8 (1-¢/8_)



From the asymptotic expansion (6) we can conclude that the
accuracy of the approximation is lower when the boundary corner is grea-
ter (it depends on v), and that difference schemes of the higher order
accuracy do not provide better approximations. With the choise of o, ©
and e such as e=v[(1+6%(1+2a)]/Y4, the problem 2. can be approximated
in such a way that the order of an error is O(h?) for |z|=0(1). For the
scheme with a=-1/6, the choise 6=+2 and e=1/(2+v2) provides the order
of the accuracy 0(h®).
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CONNECTION BETWEEN ONE PROBLEM IN ELASTICITY
THEORY AND THE METHOD OF APPROXIMATE SOLVING
OF CARLEMANN'S BOUNDARY VALUE PROBLEM

Milo¥ S.Canak

ABSTRACT:

In this papeir we consider one problem in elasticity theory
which appears to be Carlemann's boundary value problem for
analitic functions.For approximate solution of Cariemann's
boundaxry value problem we take the exact solution of corres-
ponding approximate problem and,after that,we estimate the
eryror,

VEZA IZMEDJU JEDNOG PROBLEMA TEORIJE ELASTICNOSTI I PRIBLI-
7NOG RESAVANJA GRANIUNOG PROBLEMA CARLEMANN-A: Razmatra se
jedan problem teorije elastilnosti koji se svodi na grani-
éni problem Carlemann-a za analititke funkcije.Za pribli-
#no reSenje problema Carlemann-a uzima se tadno refenje o~
dgovarajuéeg pribliZnog problema,a zatim se daje ocena gre-
Ske, '

In this paper we consider the following problem:
Find such solution of biharmonic equation

1 A*u=0 ., y>0O
which satisfies the following conditions
©)) u{x,0)= 0 , =09 < X < &0

@ uyx,0)- 6 R)uyy (x,00 2 hix) . -09<x <
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and which is bounded when y-» o0 ,if h(x) is a given

continuous function and

8’(x)-'~i——ilk , la,b,c = const./ .
e

In this case the function wu(x,y) represents the
displacement from the equilibrium position of elastic plate
which covers a halfplane and which is fixed along the line
y=0 Dby elastic hinge with .a variable stiffness,

If we apply on biharmonic equation
) uxxxx*'2“xxyy*'uyyyy = 0

the Fourier transformation

9P+ ay a4
¢ = (-ix)P S U(x,
y {3 = (1x)° g U0n)

we get the ordinary differential equation

) lﬁ .
®, U -2%°U U =
) yYYy >N yy‘+ x 0
with general solution
V)) U(x,y) = clgx)exy+ 02(x)yexy+ 03(x)eﬂxy+~cq(x)yemxy .

But,if we looking for the particular solution which
satisfies the condition U(x,0)20 and which is bounded
when y-» 00 ,we have that

(8) U(x,y) = yO(x)e” ¥V ,
Cyu(x) , x>0
C(x):;{ . 02(0)+ ¢, ( Y= 0 .
cz(x) s X£0

If we substitute the value of 6;(x) in the condition
(3) we get that

b4 =3 =X
u,, (x,0)+cu (x,0) ~ae uyyﬁx,o)«buyﬁx,o)ue h (x)+ch(x)

or,if we introduce the notation
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99 uy(x,O) =auyy(x,0)—h(x) = %8 (x)
n the condensed form
(10) cuy(x,o)«buyy(x,O)»ch(x): —e”x‘egé) .

When we apply the Fourier transformation (5) on the
equation (10) it transformes into

an el (x,0) mpUyy(x,o) “cH(x)= - P (x+1) .

Since Uy(x,O):C(x) and Uy§x,0)%=2lxlC(x),substituting
these values into (11} we hawe

12y C(x)-(c+ 2bix1) = cH(x)aCb (x4 1) o

Application of Fourier transformation (5) on the re-
tation (9) gives

(13) C(x)(1+ 2a1x1) = H(x)+P (x) .
Elimination of C(x) from (12) and (13) gives

as) P (x)e- FEEHR G o Dee ) EEE ) LRy

Relation (14) represents,so called,Carlemann's boundary
value problem for determining analitic function <P (z) .

The most of the theoxry of Carlemann's boundary value
problem is developed by soviet authors and analitic solving
methods are given in details in I}] .

Nevertheless,in many cases it 1s more convenient to
apply approximate solving methods,In monography [2] pp 156~
158,the following theorem,which enables approximate solu-
tion of problem (14),is formulated and proved,

Theorem T: Given the Carlemaun's boundary value prob-

lem

i

5y kp = P gx)+[}'ﬁb(x)]¢ (x+1) = G(x) , -00<x<09

and corresponding approximate problem

a6y ¥F = b ()+[1+70] & (x4 1)

i}
&
13
Yt®

, - 00 LX< 00,



Suppose that for coefficient by ¢ (x+1i) the following
conditions are fulfiled
1+3’(x)#0 . T)'Lx)—continuous , D(too)= 0 .
an —~
Ind[i+ D] =0

and that it may be factorized in the following way

C18) 1+D(x) = (§+ 5
where function 'ltIJ(z) is continﬁou,bounded and analitic in the
belt O« Im z<1 and nonzero in that domain, '

Let us introduce the notation

M:-.max{m}aixl?f(x)( ,mgxlﬁ(x+i)l} o

Let,further,in Carlemann!s boundary value problem (15)
function D(x) be bounded and such that

Di{x —3 X,
(19 M max l .,._S_%?G{_)S_l'd .

Then for any right-hand side G(x) from L,{(-%o, ),
problem (15) has the unique solution in belt 0<Im z<1,
That solution is determined by formula

20) b =P 4 [1+%°! (k%)) "% (o (x) -k F)

where ¢ = b (x) is the solution of approximate Carlemann!'s
problem (16),The difference between solutions is estimated by
the inequality

=t "‘-—l 5
ey N - @ ¢ Wlaxkdl,

2" 1=K (R,

where the inverse operator 'ff"l is determined by formula

(22) "16-=1§=-5'5fbd:3:[ 1 d(_’é’)} .
14 e ¥ d@ It
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net us now apply the mentioned theorem on the approxi-
ite solving of Carlemann's problem (14) .Instead of the whole
per halfplane we'll obtain only the belt 0«4 Im z<1 and
.oose,for sake of easier computation,that a=1/2 , b=1/2
md ¢=2,Then Carlemann's boundary value problem {(14)appears
0 be

, 14 txi + 1 x|
'23) P (x X b(x+i) = 20(x)- ~—-,—i-‘— H{x) ,

here function <p (%) has to be analitic in the belt 0<LIm z<1
nd for every yeEO,l] satisfies the inequality
&a

24) J.lcb (x+1iy)1 2 ax & C .
- S0
The free term G(x) = 2H (x) i‘%%l - H(x) is given in

(- ©0, 00) .Let us choose in our case that 14D (x) = = ° 25
2

x4 36
/Coefficient 1+“D’(x) of the approximate problem is choosen
in the foxm of rational function in order to avoid complicated
computations with Fourier integral.,More than that,this function
is even,equal to one in infinity and easy to factorize since

it is in form of

2 2
J S o || I
&~ u/

x% (m 1) 2

For the equation (23) the corresponding approximate e:ua-
tion will be ’

o~ 2 ~— 2
(25) & (x)+ 5125 Fixai) = 25725 1(x)- Hx) :
() %%+ 36 + X2+ 36 !

In order that the eyuation (25) has the unigue solution
it is sufficient /see [2], § 15/ that the following conditions
are fulfiled
€269 i-}-?)'(x)aﬁo -, DPlxy - cintinuous
D(teo)=0 . Ind J1+Dx)] =0 .



It is easy to check that all of these conditions hold.
Coefficient by $ (x+1) can be factorized in the following
way

2 o~ N
D 14 D(x) = x2+ 25 - N{x) . Nix) = z:-Si

x4+ 36 W(x+1)

whexre the function 'ﬁ‘(z) is continuous,bounded and analitic
in the belt 0«LIm z<1 and nonzero ir. that domain.Then *he
boundary condition (25) by the substitution

(e L
(28) P (x) = ViV (xy
where "«V (x) is new coniinuous fuilctién.is transformed into

€29) Vi +Wixrirze B BEx 5 yz00,
N(x+ i) N (x)

When we apply the inverse Fourier transformation the
equation (29) transformes into

-6(x-8l

%
¢30) W o(xyhe Y (x}ah(x)—llS[Qe e=? =80 1 gy as
~ eo

Equation (30) gives us the function Y (x).For determi-
ning of function ‘€ (x) we use relation

L ¢ (x) :w(x)'f\;(x) W( R X"‘51 W(}Q‘{- 11i \Y‘(X)

When we apply the inverse Fourier transformation on (31) we

get
(2]

2) T’é’(x) = Y(x) -11! e6(x‘s)'~y (s)yds .
R

From formulae (30) and (32) function ‘€ (x) may be deter-
mined by h{x).Now the approximate solution E'(x,y) of problen
(1) -(2)~(3) reduces to the following simplier problem

O
G A" =0
(&2 W(x,0) =0
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352 Ti‘y(X,O)ﬂ % T;YY(X,O) =h(x)+€ (x)

A(x, ©0) - bounded.

Problem (33)-(34)-(35) can be easily solved if we apply the
operational calculus/see for example [3] /.Apnlving Fovrier
transformation we easily find out that

~h -
U(x,y) =yClx)e 17

nd PN
" Clx) (14+1xl) = H(x) + P (x)

which gives

Tx,y) = yeo 1K1Y, _H(x) &P (x)

14-Ix)
a.nd 3;
(363 Woxyy)a FTH yen Xy R () :
We also have that
M= max-{max l?\f(x}l , Mmax t,‘ﬁ#(x—}»i)l}- = -g«
x X
and
37> max -’-]2-‘%‘}—'—119‘-)1 40,23
x N(x)

In that way we see that all conditions of the theorem T
are fulfiled and that exact solution of the approximate Carle-
mann's problem (25) can be taken as the approximaie solution
of the basic Carlemann's problem {(23) .,

At the end,using the Parcevalle equality and inequalities
(21) ana (37) we can make the following estimation

G8) Hex)- €l L,~ I & (0-$ 0l L, <
1

% 110,25 ”T{NI(K‘#’“ G(x) |

where the operator 71

further that

is determined by formula (22),We have



o0
39 l('f{“”l(Kg (x) =G(x){] = max { (55?\3{)? [-1:1-—?1-;-
e
¥ 53 o) Fiveen nF [l
= X ,(-L (x % 1—\-e"t
o~ a0 (%)
(l‘%;——‘:ﬁ)]lz dx)l/z}é M(Jlﬁ.ﬂ%&lz ax ) M2 ‘Q
=80
Let us estimate the lgst integral.

Cu0) “i‘—d’f—‘l‘)—l‘}—‘— ax = {15 [ o)+ L0 By -
- S A

N{x)
@70
- 2 FEE mEE]) ax ;__,fm“-l(x)[@i'f;,‘ - le 22)4’("“’"
+2( x4 25  _ l4lxl H(Xalg ax £ (0 23)2}?‘ $ (x"’i"i)"f‘ZHCXNQ'
%%+ 36 Brixi B =g

2(0,23)2| | e* € (t)+ 2n(t)]%ar .
)
Using (38),(39) end (40) we get inequality

Cu1) lI‘E(x)s‘C(x)\lL ozslle“X\E(tzh(xn( L,

In order to make functions ‘¢ and ‘¢ even closer to
each other,instead of approximate problem (25) we can take tt
approximate problem in the following form

G2y Kp = P+ (x1) [| HE2e—0 =
ka4 x“+(ay + 1)

W
= of M 25__:‘:_,&&_“_, - H
SR x4 oy + 1) ° e

with conveniently choosen values for n and a, .
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SOLUTION OF POTENTIAL PROBLEMS WITH INTERNAL
SOURCES BY BOUNDARY ELEMENT METHOD

Josip, E. PeEari¢, Miodrag M. Radojkovic

BSTRACT

he paper presents an alternative proof of the boundary integral formula-
jon for two-dimensional potential problem with internal sources. This
roof appeared to be much simpler than one derived by same authors in [4]
nd thus is easier to extend to more complex cases (i.e. three-dimensio-
.al problems). Accuracy of the method is illustrated by an example.

RE§ENQE POTENCIJALNOG PROBLEMA SA UNUTRASNJIM IZVORIMA PRIMENOM METODE
GRANICNIH ELEMENATA. U radu je prikazan alternativni dokaz integralne
graniéne formulacije za ravanski potencijalni problem sa unutrasnjim iz-
vorima. Ovaj dokaz je jednostavniji od dokaza koji su isti autori izveli
u [4] i stoga ga je lak3e prodiriti na slozenije sludajeve (na primer,
prostorni problem). Taénost metode je ilustrovana jednim primerom.

1. INTROBUCTION

Finite difference and finite element techhiques were almost exclu-
sively used to solve numericaly the equations governing the potential
problems. Recently it was shown that boundary element method (BEM) can
be also applied successfully [1].

In order to satisfy requirements that usualy arise in practice of
solving potential problems, BEM solution procedure must incorporate the
solutions of the following problems:

- modelling of sources with finite radii [4]

- modelling of coupled subregions with constant material properti-

es [3].

In this paper given is a new simpler proof for the result from [4]

concerning modelling of internal sources.
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2. BASIC THEORY

In [4] the method was developed so that potential in a source can be
computed for given flux and vice versa (note that only the first possibi~
1ity exists in [2]).A potential problem for two-dimensional domain £ from
Fig. 1-a was considered, where T, S1,S2,...,5, are its boundaries {S;,Sz,
...sS, are circles with radii roy, roz »...sVon representing the system
of internal sources).

Fig. 1.
Equation that governs the problem reads:
n
(n v{Kyu) = - z Q],c 5(?"321()
K=1

where u is the potential, n is the number of sources, Q; is the volume
rate of flux (positive for a source, negative for a sink) for the k-th
source, ?k is the coordinate of the k-th source and § is Dirac delta fun-
ction. For a homogeneous medium (K=Const) (1) becomes:

n
{2) v2u = - ) Q s{%-Xy)
k=1
where Q = Qi/K (K = 1,2,...,n).
The boundary conditions are:

- o=
U=u onTy, q=oo=qonr, (r =r, +7ry).

Since (2) is Poisson’s equation one can start from its well known
boundary integral form (see for example [1, pp 45-47])

(3) Ciui + f bu*dQ + s ug*dr = s qu*dr
Q T r

where u* is the fundamental solution of the Laplace equation (solution
for concentrated potential acting at point "i"):

(4) u* =

In 1
r

i
21
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where r is the d1stance from the point "i" to any point, ¢! is a con-
stant from [0,1] (¢* = 1 for an internal point, cl= 0 for an external po-
int and C* = 0,5 for a point on the smooth boundary) and b is known fun-
ction from Poisson equation. In the case considered:

1

(5) b=-3 Q 6(X-3x)
K=1

Than (3) becomes:

. n
(6) Clui ) u;* Q; + Jug*dr = squ¥dr
j=t1 r r
i.e.
(7) Z ul*Q + E S ug*dr = E I qu*dr
j= K=1 Tk K=1 Tk

where N is the number of segments used to devide the boundary (boundary
elements).

In the case when all Q;S are known one has the case from'[2,p.49]
where the method of superposition was used to solve the problem.

But the case from [4] where all Q; are not known can be also obta-
ined using (7). If the potential uy,. on S; is known (see Fig.1-a) one
can assume its value on the d1stance ro; from source and put point "i"
on this distance from the source (see Fig.i-b). Now, this is a point in-

side the domain and ¢t = 1 so that (7) becomes:

N
(8) Z u "o, +Z rougdd =Y rquid
k=1 T K=1 T,
For j=i one has:
ix _ 1 1
(9) Ui -?—E]n Y‘oi

For j # i one can suppose rj;> ro; + roj(r;; is the distance bet-
ween sources i and j) and put:

(10) TS -2—11? n FL
1j
Equations (7) and (8), after selection of the boundary element type
{constant, linear, quadratic, etc. or mixed) [3] can be solved for all
unknowns u’s and q’s on the boundary T and all unknown u’s and Q’s for
sources (sinks) by solving corresponding system of linear algebraic equa-

tions.



Furthermore, using these values, one can compute the values of u’s
and g’s at any internal point.

Note that the same result was obtained in [4] but the proof given
in this paper is much simpler. The similar procedure can be extended to
threedimensional case without any difficulties (at least from the theore-
tical point of x view).

3. AN EXAMPLE

The procedure outlined above was incorporated in the BEM computer
program currently in use at Civil Enginéering Faculty in Belgrade to
solve two-dimensional potential problems. One example used for verifica-

tion of the method is given in Fig. 2. Domain boundary
2 @ Internal nodes
r=0.5 O Boundary nodes
0 100
P3
50
e P1
P2
<= = == = O F O JH
=X =100 =50 0 50 100 X
Fig. 2.

The problem is to find the potential distribution in the half pla-
ne with straight boundary (y=0) along which the constant potential u = 0
is given. Three internal sources with radius rg= 0,5 are located at po-
ints P, (-100,40), P, (100,20), P53 (100,50) with potentials given. Nume-
rically computed fluxes in each source are compared with analytically
computed ones in table 1.

Table 1.
Pl P2 : P3 Method
u (potential) | 4.97 | 4.83 | -4.94
Q (flux) 6.025|5.990 | 4.785 | Analytic solution
Q (flux) 6.000 | 5.975| 4.780 | Boundary elements

Potentials inside the domain in different cross sections of the
half plain are compared in Fig. 3.
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CROSS SECTION

<

A X=0
3
analytic solution
2
© © ©° bpoundary elements
1

0 20 40 60 80 100 y

u CROSS SECTION u CROSS SECTION
y=30 y=45

Z / N ).
1/ ZANEVANE NN
7 7

=150 -100 =50 0 50 100 150 x ~-150 =100 -50 O 50‘ 100 150 x
Fig. 3.

It is seen that the numerical solution of the problem considered is
very accurate although the boundary discretisation was rather rough. Note
that solution of the same problem with finite element method would require
very fine discretisation in the vicinity of sources to achieve the same
accuracy.
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A POSSIBILITY FOR CALCULATING PRESSURE GRADIENT FORCE
IN SIGMA COORDINATE SYSTEM

Dragutin T. Mihailovié

BSTRACT:

new scheme for the ealculation of pressure gradient force
n the sigma coordinate system i8 proposed. An approzimation
or the wa term in the thermodynamice equation is considered
00. The proposed method and an earlier approach {2} is com-
ared by time-integrations of the atmosphere at rest,

EDNA MOGUCNOST ZA IZRACUNAVANJE SILE GRADIJENTA PRITISKA U
IGMA KOORDINATNOM SISTEMU. PredloZena je nova fema za izra-
cunavanje sile gradijenta pritiska u sigma koordinatnom sis-—
temu. Raszmatrena je Jedna aproksimacija za wo Elan u Jednadi-~
ni termodinamike. PredloZeni metod 1 jedna ranije predloZena
aproksimacija {2} pordjene su pomodu vremenskih integracija
ga sludaj mirne atmosgfere.

1. INTRODUCTION

The problem of calculating pressure gradient force in
the sigma coordinate system is well known. It is related to
the appearance of two terms in the expressions for the pres-
sure gradient force. For example, with the original sigma coo-
rdinate {8} over a sloping terrain the two terms in the exp-
ressions of the pressure gradient force tend to be large in
absolute value and have opposite signs. If, say, they are in-
dividually ten times greater then their sum, a 1% error in
temperature (2-3°C) will result in a 10% error in the pressu-
re gradient force {9}. To overcome this problem, a number of
difference analogues of the pressure gradient force in the
sigma coordinate system have been developed {2},{1},{3}. A
problem encountred by some of these analogues when geopoten-
tial is initially specified rather than temperature has rece-
ntly been discussed by Mesinger {5} and compared by a numeri-
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cal example of the atmosphere at rest {6}.

In this paper we shall concentrate our attention to the
possibility of calculating the pressure gradient force in the
sigma coordinate system by means of an interpolation proce-
dure. In addition, we shall try to approximate in finite-dif-
ference form, the wo term that provides consistent transfox-
mation from potential to kinetic energy. Finally, the propo-
sed schemes was compared with an earlier one {2},

2, METHOD OF CONSTRUCTION

Notation

= o
@Ry <H ST Ay

< e £ = a

[4)

v
p

specific heat at constant pressure
suffix indicating level of the model
pressure

gas constant

suffix indicating surface value

suffix indicating atmosphere top value
tenmperature

lateral vector wind

components of Vy

specific volume

(p=pt)/(p8=pt) the vertical coordinate
do/dt

PPy

dp/dt

geopotential

lateral del operator in "sigma" surfaces
lateral del operator in "pressure" surface

In the sigma coordinate system, the differential form

of the pressure gradient force has the form

(1)

= V6 = = Vg4 - RIVn

Starting from this expression, Kurihara {4} proposed a

technique for calculating the pressure gradient force in the

sigma coordinate system. Namely, it is possible to minimize

the error in the calculation of pressure gradient force by

interpolating geopotential from the nearest sigma surfaces to



constant pressure surface. This idea was applied to vertical-
ly non-staggered grid with velocity components, temperature
and geopotential defined in the middle of the layers.

Kurihara’s idea can also be applied in the case of the
staggered grid in the vertical, with geopotential located at
the interfaces of the layers. This decision seems more reaso-
nable since the latter grid is a better choice then the for=-
mer one {10}. In our case we used quadratic interpolation in
accordance with the hydrostatic equation in the form

3 RT

(2 et = e [

) 72 2
Let us add that in the case of a more realistic atmo=

sphere (inversion) we can apply the spline method of interpo-
lation using all levels of the atmosphere model.

For a number of pressure gradient force schemes an as-
sociated procedure for calculation the wo term of the thermo-

dynamic equation,
(3) 2(ne ™) + v_(1Ve T) + 2(néc T) = mwo
ot p o p 30 P ’

ensuring consistency of the transformation between kinetic
and potential energy, has been developed. Experiance has
shown that it is desirable to preserve the consistency even
in numerical models designed for short-range simulations.
Otherwise, numerical instability may be encountred in less
than a day of simulation time, in the presence of steep topo-
graphy especially.

The contribution to thevgenération of kinetic energy

by the pressure gradient force can be written in the form

(4) Two = = (n ¢ 5) - Vy(mey) - LI 2L v. (v g)

It was stated already that the exact cancelation, in the fi-
nite-difference form should be provided between the wo terms
in (3) and (4).

189



Taking into account the continuity équation, hydrosta-

tic equation, and w, we arrive at
e e D (148) = 2 (00) 2T = 4y Alnpy,

(5) mwa = 80(1T¢c) ao(¢°)3t oV, mV + RTp 5p v VT

Comparing the right sides of the expressions (4) and
{5), that must be equal and in the finite-difference form, we
find that the divergence of the surface pressure should be
calculated via the expression

ﬂ(VpQ - Y50)

RTaZnE
_ ap

(6) Ve =

In this way we cancel the wo terms in (3) and (4) in the ex-

pression for total energy.

Using the thermodynamics equation (3), hydrostatic eg-

uation (2) and definitio of w, we can write

Velm(v_¢ = v _¢)]
(1) wo = = =egh + op 5f 3L ey T 1
p RTTB
p
In the finite-~difference form, the last expression,
for the case of horizontally staggered variables, in the x

direction, has the form

N T N I : Z s 1
(8) (wo)y = cp{lc 8,0 + 5 w70 §.0lo + LV |n*(aw’p¢ %,o” }
where
8 ¢

= _4-—..9;-—_
©) Zo = RT6Inp
and § and § are operators of divergence in the finite-

P x,0

difference form in:x direction for p=const. and o=const. The
subscript 0 denotes the point where the contribution of the
wo term is calculated; m, denotes the value of w in the point

in which velocity components are not defined.
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3. A NUMERICAL EXAMPLE

We copmared the proposed scheme with an earlier appro-
ich {2} which includes a non-staggered distribution of vari-
ables in the vertical.

The experiment consisted of time-integrations with an
atmosphere in a hydrostatic equilibrium; motions generated
are thus a consequence of the pressure gradient force error
(Blumber, personal comunidation)n The integrations were per-
formed in a two dimensional domain (x,o0) with constant boun=-
dary conditions specified at the western boundary (x=0). At
the eastern boundary (x=12000 km) the radiation boundary con-
dition was used {7}. Atriangular mountain with 500 km width
and the maximum height of 2 km was defined in the midlle of
the domain. The atmosphere was devided into nine layers in
the vertical. The initial surface pressure was 1000 mb away
from the mountain. The top of the model atmosphere was at
200 mb. A strong inversion up to 900 mb was located on the
left of the mountain; the temperature was 0°C at 900 mb and
-10°C at 1000 mb. Otherwise a temperature profile linear in
lnp was assumed, the temperature taking on the value 3.5°
at 1000 mb and 0°C at 900 mb. The exact initial geopotential
was calculated integrating the given temperature profiles.
The grid size was 250 km, time step 10 min, and Coriolis par-
ameter 0.0001 s7L.
days0 1 2 3 4 5 6 7 8 9 10 11
C 18.49 6.08 5.61 5.49 5.55 5.42 5.42 5.40 5.47 5.48 5.53 5.51
I 0.39 0.39 0.41 0.42 0.43 0.44 .0.46 0.47 0.48 0.50 0.5} 0.53

days 0 1 2 3 4 5 6 7 8 9 10 11
C 8.92 5.40 5.12 4.84 4.68 4.60 4.41 4.32 4.20 4.10 3.99 3.93
I 0.32 0.32 0.33 0.34 0.35 0.36 0.38 0.39 0.40 0.42 0.43 0.44

Table 1. RMS pressure gradient force error, in terms of geostrophic wind,
for different schemes, and for the wind point nearest the moun-
tain at its "inversion" side (above) and its "no inversion" si-

de (below).



(because of the system symmetry V=V(r,e), V#V(z) and aV/52=0)
and boundery conditlon V=0 for r=a, and may be obtained by cop=

ventional applicatvion of the image theorem.
Following this theo=

° vem the equivalent electro

o fi///ﬂ static bysrem (the original

N g* and its lmage
P ,

L N -
i,jm v “ 1mcdu@6 st the dire
~ l:j
- TR w=a/d, =/} can be used.
20 the electric scala

potential fs
(2} V = g?G , where
(3) @ = 4%5 ri&o;aQWZaEWﬁ cogl{e-1)
' [T“rd Al LUQ(C»
ig so called Green’s fuunction, ©,6 zo0rdd
tes, £ 18 the electric permitivity e Di
rac’s d=f ions defined for m=d

3, A NEW INTBRPRETATION OF THE IMAGE THEOREM'
The equation (1) can be also solved by follo
of integral transform method [2]5

Considexr Laplace’s equation %~

and agsune vhe potentisl solution in
V = R(x) F(e} , where

(4) o= K°F ,  pPR?I+xR?+ICR = 0O

and k is the separable constant to be determined., The solutions
difevential eguations (4) are ek@ and e k@? and cl(z)=c g(uum
and 1(v)ﬂsvn(kanw), respectively. Puting kenk, (n is an inbege
and determining k, so the functions ¢l (M) @0 s(uk 1nm) and
Sln/1>mhln(ﬂk 1n~) satisfied coqo;r;on*

- b 0, for n#n
(5) ) e (m)er (£)EE = and
& =
( (1+-<5%w)9 for n=n
B (Dg for n#m and n=0 ox m=0
5 dr _
6) J sl (r)sl (x)Z= = 5 -
a8 | »
L ==, fox n=n#0 s

?
where b> a, we have k, = L/Ln(b/a)
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expending Dirac’s {-function {(r-d) in the series

1) Clzea) = 5 2sl (x)sl (a)
( el nZ1 ln(b/a) s for acd<b ,

we have in the case when b—eco

(8) ré(r=d) = %'f ein(pln%)sin(pln%)dp .
o

Because of the obtained Dirac’s J =function integral transformation
the solution of Poisson’s equation (1) can be written as

. . d
©  gin(plnt)sin(plnd)
g’ 8 2 -
(9) TE g P Sh(pﬁ) ChK@ J\i’ﬁ)p]dp 9
wher "+" is for O¢eg&d and "=-" ig for Ase ¢ 27,

3, APPLICATION OF PRESENT RESULTS, TXEMPLES AND CONCLUSION
The physical solution of the consider problem is indepen-
dent to the mathematical approach. So the solutions (2) and (9)
are equal and we have the following expression: V(from formuls 2)
V(from formula 9), Using series

e T = =t T =(2m+1 )3 =p o=t 7+ (2m+] )T
(10) ch_(se.h oIl)JtJ.Q;e - mz;‘o oP [0=dtT=(2m+1 )2} | =p[o=uti+(2u+1 )T]
e
and integral J lzﬁ%ﬁpé emdep = %1n§§%§~ , for B> 0, we have frol
o

last expression
co 102 (Ed)+ [omttn~(2n+1)7] 2

(11) 2’ - a%r2eat-00%ra cos{@=d)
m=m«>1n2(§) +[§«Aiﬁ=(2m+1)ﬁ]2 az[r2+d2m2rd cos(e-d)]
vhere a { r<w, a< d and with "+" for Oge - and "=" for L ¢ eg 27 .
A

Puting in (11) Y=e=4 , R=r/a>1, D=d/a>1 or RD=e™, A>0, and
R/D=eB, B igs optional, we have:

21 10%(RD) +(Y=2mi)2  _ RZD%+{-2RDcosY
(12) 2= | =

L 5 =2 = 3. 3 and
m==c0 1n“(R/D)+(Y=2m7) R“+D“~2RDcos ¥

(13) P - r“] A2+L;r2m#)2 = ChlA=cos¥
n=1 B +(W 2mJ02v chB=cosY

Separately, we have:

ac) 2.2
(14) P,= [ ——I&EQ%E _"'—%Eéh% , for ¥=0,

=1 B +4.m I
(15) Py= FT g sh(XC s for ¥Y=0, A=27C and B=0 and
m=1 2 x
o ~
2m=1 ch(JtC/2 = .
(16) By ——ﬂ-———l— Shifere) | for v=#/2, A=70/2 and
3 Q1 pPe(2n-1)° chWE ’ " B=£D/2 ,



The obtained formulas are very useful, because of the slovly
convergence of present infinite products. The convergence of pro-
duets shown folloving numerical results (Approximate values are
calculated by multipling 65 membres of infinite products. The exac
values are in breckets.):

For R=2, D=2 and Y==T P = 1.55783 (exact P = 1,5625),
For R=2, D=4 and Y==& P = 2,24039 (exact P = 2,2500),
For R=2, D=2 and Y==i/6 P = 9,36901 (exact P = 9.93971143).
For R=2, D=2 and Y==21/3 P = 1.74477 (exact P = 1,7500).

In the following table the exact values of P2 for different
C are shown.

C 1 P, ¢ ‘ B,
o,  177,000000000 2, 1T L, 26129238401
0,01 | 1.000164501 5. | 2,11218478+05
0,1 ’ 1,016530706 10, | 7.00783188+11
0.5 | 1,465052383 20, 1.5428269B+25
| 1o | 3,676077910 50, |  5.2682675E+65

Combinig the results (16) for C=1 with lmown formula

e U R _ () (4o 1oy _ snX
Fg l;L (1 " ) = % , we have B, = 532(1 7 ) = Pt

= 0,9190194776.
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VALUATION OF SEVERAL SINGULAR INTZGRALS USING ELECTROSTATIC
PIELDS LOWS

Dragutin M. Velidkovid

BSTRACT:

ging electrostatic fields lows a special approach to the seve=

3l singular integrals evaluating is presented. The obtained re=

1lts are useful in numerical solution of electrostatic problems
vy integral equations technique.

ODREDIVANJE NEKIH SINGULARNIH INTEGRALA POMOCU ZAKONITOSTI ELEK-
TROSTATICKIH POLJA: Kori3denjem odredenih elektrostatidkih zako-
na igvrieno je izradunavanje ocdreGenog broja singularnih integra-
la. Dobijenl rezultati su od koristi u toku pribli¥nog 'numeridkog
redavanja integralnih jednadina elektrostatike.

'y, INTRODUCTION

In the applied electromagnetic field theory we have often
necessary to compute several kindsof integrals having singular
subintegral functions. Special in the case when field points are
in the region of electromagnetic field sources, Because of the
singularity of subintegral functions conventional numerical qua-
drature formulas are not useful, except after the singularity ex-
traction, The present paper shown an effective method for evalu=
ating several kinds of singular integrals. In the present method
essence is the application of several electrostatic field lows,
in the rirsf place conformal maping and logarithmie potential the=
ory. Except general theoretical description, two separate examples
are shown. The obtained results are very useful for numerical 8o-
lution of electrostatic integral equations systems. So we have the
excelent numerical results in the theory of stripe lines,



2, BVALUATION OF SINGULAR INTEGRALS

We consider planparasllel electrostatic fiséld with kmown
but arbitrary cross section (Figel).

z=plane w=plane
Pig,1 . Fig.2

Tor electric scalar potential evaluation two general px
cedure exist:
19 In the case when the surface charges densities on %t
electrode, N (¥’), are known, the potential, V, iss
U, for §€:Si, S, is conductor interior

) V(F) =
: ® é’?(r’ dlgln(lrmr’l/lr -?|), for e Se

S is conductor exterior,
where ¢ is the contour of conductor crogs section,& 1s electx!
pernitivity, U is the conductor potential and q’= &$7(¥?)al? :

c

the conductor total charge per unite length.

29 The second way for potential evaluating is based on
conforma% maping. 1f we have the complex function w=RejW= u+js
= f(z=re!®=x+jy) , 3= V=1, which map the exterior of conducto:
z=plane to the unite circular cylinder exterior in w=plane (Fi
the complex potential is
(2) ¢}= U, for Rg 1

Us 5l 1nw = V4jf , for R> 1,

During conformal maping the electrode potential and total line
charge densitles are constant.

The real part of ¢ is potential,
(3) V=Re{4>}=U~-2-§-é-1nR,
The electric field on the conductor surface is E=|dd/dz| =
= q'|w?|/21¢€ , where |w!|=|daw/dz| for R=1, Using boundary con
tion W =fE we have

4) =% \w .
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uting (T) in (1) the potential is

? \ e d
g‘ Iwb {(LL? 1n( f,fm;gi [/ 1% Ty ey ¥ | ), S S% )

e
Sompering (%) and (5) we have
0, for e S
: f>a b wmfv 9 = Y ) i
(6) j]wgidi Ln('l I/li 1) 271nR, for Te S@ .
1 Fume

a gingnlar subinte
formula for evaluating these

"

present integrals is independent

5, EXAMPLES
Congider linear conformal maping
the circle having rodiuve o in s-plane to the
94 1/@9 a1e

wewla, o is pogitive

hich map

In this case is:
8’ -2arco ’(@w@?)glﬁ T
presgion (6) given

(@0“@*‘ /3 g

r o
0, for v¢a

?'g w=Zap 908(@M%?) de’=
cos (@ ~o*
() js

For a=1 and %QEO we have
7 - 0, for » s

dniny , fTor vx=1

) 2oy

The valuve of

Ap';} ane.

| pw @' -

r:) Y /)
086, T and cogle = (mgmy“)/(xd¢yg}m
For diffevent values of x and y we have:

B, foxr l=x=ite

0
2 2. .-
i CE w12y Vo e © .
{ln : f:‘ = o Tor |xine
, 2

o Tox L lg .

(Y @y@)g ) o
X~ ;




