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PREFACE 

The conference "Nwnerical Methods and Approximation Theory" was held 

at the Faculty of Electronic Engineering, University of Nis, September 

26-28, 1984, It was attended by 46 mathematicians fPom several universities. 

These proceedings contain most of the papers presentedPduring the con

ference in the form in which they were submitted by the authors. Typing, 

grammatical and other errors were not, except in some isolated cases, edited 

out of the received material. 

The topic treated cover different problems on numerical analysis and 

approximation theory. 

September 1984 G.V. Milovanovid 
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Numerical Methods and 

Approximation Theory 

Nis, September 26-28, 1984 

GAUSSIAN ELIMINATION FOR DIAGONALLY Dot~INANT MATRICES 

Zvonimir Bohte, Marko Petkovsek 

\BSTRACT: 
lilkinson [1] p~oved that the p~ope~ty of aolumnwise diagonal 
lominanay is p~ese~ved during the Gaussian elimination. This 
:s t~ue only fo~ exaat arithmetic. In this pape~ a aor~espon
Ung theorem for floating point arithmetic is p~oved. 

iAUSOVA ELIMINACIJA ZA DIJAGONALNO DOMINANTNE MATRICE. 
lilkinson [1] je dokazao da se osobina dijagonalne dominant
tosti po kolonama u toku Gausove eliminaaije ne narusava. To 
'e taano samo za egzak.tnu aritmetiku. U ovom radu je dokaza-

·•a odgova~ajuda teorema za aritmetiku u pomianom zarezu. 

1. INTRODUCTION 

Let A be a real square matrix of order n. The Gaussian 

elimination for the solution of the system of linear equations 

Ax :: b 

yields a set of 

A(r)x 

where A(1) = A, 

trix. The matrix 

equivalent systems 

:: b(r) 
' 

r = 1, ... ,n 

b ( 1) = b and A(n) is an 
A(r) has the following 

upper triangular ma.

block structure 

where Ur is an upper triangular matrix of order r-1 and Ar 

a square matrix of order n-r+1. 

Wilkinson [1] proved: If the original matrix A is 

columnwise diagonally dominant, i.e. if 

n 

, L Jaikl ' 
l=1 

k = 1,, .• ,n 

i.ik 



then the matri~ A is also columnwise diagonally dominant, ~.e. 
r 

n 
f , (r}, 

.t: ~aik I 
J:~r-

i#k 

k = r,~·· ,n 

for all r = 2,~ .• ,.n-1~ He also proved that 

max ~a~~}r ~ 2.max\a.kt. 
i,k.r I i,k 1 

Unfortunately, the presence of rounding errors may de

stroy the original diagonal dominancy. Therefore, to ensure 

the. nonfailure of the method it is· necessary to require more 

than just a mere diagonal dorninancy. 

In the analysis of rounding errors we shall use the 

equation 

( 2) fl(xoy) = 'xoy)(1 + e) , 

where x and y are any standard floating point numbers and 

fl(xoy)- denotes the co.mputed result of any of the four arith

metic operations. vie- shall suppose that the relative error of 

an arithmetic operation is bounded by unit rounding error 

which is normally 

u = bl-t/2 (for rounding} 

(for chopping) 

where t is the length of the mantissa in the base b (usually 

2 or 10). It is of course assumed also that during the computa

tion no ove·rflow or underflow occurs. 

In the following we shall leave out all work with the 

right-hand sides. 

2. THE ALGORITHM AND ERROR ANALYSIS 

He denote the current calculated matrix at the r-th step 

by B(r). It has the same block structure as the matrix (1) 



· en 
t is assumed that the matrix A = B is the matrix stored-

n the computer. 

'I'he algorrthm for the calculation ~f the uppeP trian

gular matrix B(n) is as f0llows: 

r :: 1, .••. ,n-1: 

i = r-1-1 • •.• ,n: 

(3) m. ::: n(b~l"Jfbf'r·)c) 
1r 1r rr 

k = r+1, ••• ,n: 

( 4} tf~+ 1 } = fl(bl~' -

Let us denote 

i ,_k = r, .•. , n 

and 

(o) h = maxhr, r = 1, •.. ,n 

8sing (Z} in (3) and (4) we hav-e 

and 

i ,k :: r+1- ,_ .•. ,n 

and 

( 9) t X ir ~ ' tY i~) I ' l z l~) I ~ u 

Let us suppose that 

(1G) [qirl ~ 1 

We can write equation (7) in the form 

(11) b (r+1) = b(r) _ b(r) + d{r) 
ik ik qir rk ik i ,k = r+1-,-· •• ,n 

Hhere 

d (rl __ b(r)( + (r} + (r))(! L z~rkl) + 
ik -qir rk xir Yik xiryik ~ • 

+(b~r) - . b(r))z~r) 
1k q1r rk 1k 

Then we can obtain the bound for dl~) using (5), (9) and (18) 

(12) fdi~)l ~ hr(2u+u 2 }(1+u) + 2uhr: (4 + 3u + u
2

)uhr 

Now, we can formulate the theorem. 



3. THE THEOREM 

Let A be a columnwise diagonally dominant matrix of 

order n and furthermore, let 

n 
(13) lakkl > .~ iaikl + cun(n-1~lakkl , k = 1, ... ,n 

~=1 

iotk 
2 where c = 4 + 3u + u , and u is the unit rounding error. 

Then the following is.true for r = 1, •.. ,n: 

(i) the matrix B is columnwise diagonally dominant and r 
furthermore, 

lb~~)l > .~ lb{~)l + cu(n-r+1)(n-r) lakkl , k = r, .•• ,n 
~=r 

i~k 

(ii) r lb~r)l ~ j iaikl + cu(2n-r)(r-1>lakkl. k:: r, ... ,n 
i=r ~k ~=1 

(iii) lb{~) I ~ ( 2 - cu(n-r+1) (n-r)) lakk I , i ,k = r, .•• ,n 

PROOF. We shall prove the theorem by the mathematical induc

tion with respe7t to r. Let r = 1. Then, since B( 1 ) = B1 = A, 
proposition (i) coincides with (13). Obviously, (13) implies 

that cun(n-1) < 1. Therefore, (ii) and (iii) hold trivially 

for r = 1. 

Let propositions (i) - (iii) hold for some r, 1 ~ r < 

~ n-1, and let r+1 ~ k ~ n. From (11) and (8) we obtain 

( 14) 
n 
~ lb~r+1) I 

i=r+1 ~k 
i~k 

+ I lb~r)l 
i=r+1 ~k 

+ I ld~r)l 
i=r+1 ~k 

Hk i#k 

From (i) and (8) it follows that the inequality (10) holds. 

Therefore, we can use the bound (12) in (14). From (i) it 

follows 



r'Om (14) we have 

n ( ) 
+ ~ lb.kr I + cuh (n-r·~1) ::: 

i=r+l ~ r 
Hk 

= i~rlbl~)l - lqkrl lb~~)l + cuhr(n-r-1) 

iolkl 

Finally, from (i), (iii), (11) and (12) it follows 

which 

~ lb<.kr+1)1 < lbk(kr)l - cu(n-~+l)(n-~>la f -L • • kl< i=r+1 ~ 
i~l< 

- lql<rllb~~)l + 2cu(n-r-1)lakkl ~ 
< lb(r+1) 

kk - d~~)l - cu((n-r)(n-r-1) + 2)lakkl ~ 

~ I b~t 1 > I + 2culakl<l - cu((n-r)(n-r-1) + 2)lal<kl ~ 

~ I b~~+1 >I 
proves ( i). 

To prove (ii), note that 

n 
(15) . L lqirl < 1 

~=r+1 

because B is columnwise strictly diagonally dominant. Therer 
fore, (11), (12}, (15) and (iii) imply that 

~ ¥ lb~r)l 
i=r+l ~k 

n 
~ . I I bf~> I + 

~=r 

+ lb~~)l. ¥ lqirl + ¥ ld~r)l ~ 
~=r+1 i=r+1 ~k 

2cu(n-r)lakkl 

Then, using (ii) it follows 

(16) 
n 

~ L I a · k I + cu ( 2 n- r ) ( r-1 ) I al<l< I + 
i=l ~ 

::: 
n 1 

L la·kl + cu(2n-r-1)rlal<kl 
i:::1 I~ 

and we have obtained the same inequality (ii) in which r is 

replaced by r+l. 

5 



6 

If t·le procee~ and use the inequality (13) in Al£~ we get 

~he-re fore, for each ,pair i ,k ::: r<t1, •• ~ ,n 

which proves UiiL 

4. CilNCLIJSIONS 

The assump.tions of the 'l'heorem are suf·ficient to ensure 

that the .Gaussian elimination in floating point cannot break 

down. All the quotients mir are bounded in modulus by 1 and th~ 

pivotal growth of the computed elements is bounded by 2. There· 

fore, in view of Wilkinson's error analysis [1] the .Gaussian 

elimination for matrices which satisfy (13) is numerically 

stable. 

The Theorem also enables us to determine the minimal 

length of the mantissa which ensures that the breakdown of 

the Gaussian elimination cannot occur. Let the matrix A be 

such that 

n 

~ d . L l aik l -• 
J.:::1 

k ::: 1, ••• ,-n 

i~k 

The following table -shows the minimal length of the mantissa 

in dependance on d and n with rounding in base 10. 

minimal 

r-:-:-:-:-~---· ~----n-: 5 

I
I 1·1 : 

1'5 4 

I 2 3 

REFERENCES: 

length of the mantissa 
.. ·~···. ··-·-·-·--~-. 

n ::: 1D n = 100 ·-------;,···----------·---9-- -- ---·; 

6 

5 

4 

4 

8 

7 

6 

6 

1. WILKINSON J.H.: Error anaLysis of direct methods of matrix 

inversion. J. ACM 8 (1961), 281 - 330. 
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)l-J 80!1!:': J.:UJI1ERICAL PHOPEHS:ES OF n;J;'TlnTJ~:-DD'JENSICNAL SIEPI,EX 

l\1ilos M. Laban 

,BSTHAG'e! 

:tarting from an analytic model of infinite-dimensional sim
llex in Banech space, the possil1ility of it's r:;oocl approxima
;ion by one of it's finite-clirnensionel subsimplexes is obse
·ved .The class of simplexes, where sue>,_ a DpJ)roxirJation is 
IOSsible to eip,hter make or not are established_ hy a sequen
.e of theorems .Here from, the members of tl"e class of limited 
.nfinite-d imensioDal simplexes 1vi th vertices makin:\ the urt
o~onal systen,could not be BPDroximated on such a way. 

1 l\EKIF I'm· ~ 1h,LJI:: OSOllll: J\1: 1;_ ;o,;~'-;}-~l ·''"1. C-Oil ;~J ',IC! C\} ~1 H PLEK
;\.Pola?,eci od analitick<w moclfllR heskonBcno-c1imenzionog si

mpleksa u Banahovom prost6ru,ispituje se mogu6nost njecove 
dobre aproksirwcije jerlnin njer::oviu k-onocno-di111enzionirn pod
simpleksorn.J;izom teorema ntvr(tu,4u se klase sirmleksa kod ko
~ih je tal<:VB .'lproksimacij<J ffiOf.CUCB i one kod ko~jih nije ITlO[':U
ca.Tako se dobija da ani iz klase o~rani6enih heskona~no-di
menzionih simpleksa 6ija temena cin~ ortOfODAlan sistem,ne 
moru biti aproksimirani na pomenuti na~in. 

A finite-dimensional simplex in mathenatics ond appli

cations is widely threated notion .'2he:re exists A ere at numb

er of articles on anal;ytic-f'c~ometrical p:ronerties of a n-di

mensional simplex and, consequently 1 nu:r1erical apnlice~;ions--. 

'l'he notion of infini te-dirnensional sirmlex is int1"odnced by 

Bastiani in f l], and is rleveloped in topoloc::ical sense by 

f.,aserick in ;-4] ,:Phelps in [5] ,Lau in 13 jt:mfl. Eollein in [2]. 
For a difference of such a clirection 7 \JG sh:,ll de8l with the 

analytic-~eometrical approsch to tl1is notion,teepinr on mind 

that infinitc'o-climensional sir,nlex I•Tould be natnral r;enerali

zation of a fini te-dir:onsional case as much ns possible .At 

the samG time,we shall insist on the results which are suit

able for the numerical prnctice. 

7 



At first 1 we shall show that it is possible to make su
ch a construction in at least infinite-dimensional Banach 

space. 
The or em 1: Let X be Banach space and let x

0
, x1 , ••• , xn, •.•.• 

be such a vectors in X that { x1-x
0

, ••• ,xn-x
0

, ••• } is the 
infinite unconditional set of linearly independent vectors. 
Let us denote 

+ill } 
~ G x converGeS 
n=o n n 

;{i
0

, ••• ,ikJ C 

C{o,1,2, ..• 1) 
Then S T ,where A denotes the closure of set A. 

Praof: 10 Let 
exists sequence 

( 1) limy. 
j -+HI) J 

y be an arbitrary vector from S.Then there 

(yj)(j=l,2, ••• ) of vectors from S such that 
+ill . +ill . . 

=- y ( y ·= ~ Jg X " ""' Jg =1 • Jg ~0 ) 
J L_ n n ' ~ n ' n n=o n=o 

states.Let us denote 

It is easy to verify that 

(2) YjET (j=2,3, ••• ) 

Since =1 ,it follows 

+'<D • 
and by ~Jg x =Y· 

n=o n n J 

j . 
lim ( 1- 2::: Jgn) 
jo++ill n=O 

we obtain 

0 

~im II ~~:- jGnxJ = 0 
,1-»ill n=J+l 

If we,nov1 1 let j ~+ill in (3),then accordiw~ly to (4-) and (5) 
we have 



lim I!Y~-y.ll 0 
j-HC!D J J 

•herefrom and (1) it follows 

lim y~ = y 
j-HOD J 

Herefrom,with 
ly !3 <; 'T • 

the regard to (2),we obtain y E. T •. Consequent-

2° Let 
exists sequence 
that 

z 

~im zj = z ( 
J-HC!D 

be an arbitrary vector from T ~Then there 
(zj)(j=l,2, •• ,) of veetors from T such 

kj . . kj . . . 
Z • = ~ Jon Jx • ~ J,.,n=l • J,., J'h ">.O" 

£- ., n n ' L- ., ' ·to' •· • • ' 'l k . "' ' 
J n=~ n=o J 

states.Let us denote 
; { j x o' • ' • ' j xk ,1 C { x o' xl' • • • ~ ) 

J 

where 

j~, 
n 

X. jx. 
' n== ~ 

' xn$ { jxo' • • • 'jxk,} 
J 

It is obvious that zjES (j=l,2, ••• ).Since zj=zj 
ows lim z ~ =Z 'hence z E !3 •. Consequently T~S' and 

j-HC!D J 
is completed. 

,it foil
the proof 

'rhis theorem allows us to use the following notion of 
!a infinite-dimensional simplex: 

9 

1Definition 1: Set !3 we shall call the infinite-dimensional 
simplex (IDS in the further text) with vertices x

0
, xl' x2 , ••.• 

and denote S(x
0
,x1 ,x2 , ••• )~At the same time set 

p(x. ,x. , ••• ,x. , ••• )def x. + L(x. -x. , ••• ,x. -x. , ••• ) 
Jl J2 Jk Jl J2 Jl Jk Jl 

(L denotes lineal) we shall call the face of S(x
0
,xl'x2 , ••• ), 

if {x. ,x. , ••• ,x. , •••. }is the finite (or infinite) set of 
Jl .]2 Jk 

different vectors which is subset of {x
0

,x1 ,x2 , ••• } 

The following theorem(obviously brue) points out that 
such a notion of IDS keeps a number of very important and 
for application ruther useful properties of it's finite-dim
ensional generator. 



2 L · f x 1 be a fJ...nitB ·(or infin-'l'!'l.eorem : e·t ·l x . , x . , • • • ~ J. ., • • •·j 
JJ. J2 . k 

ite) set of different vectors -which is subset of {x0 txp ........ }. 

'Then.: 
'10 S(x. ,x. , •.••.. ,x . ., .••.•. ) 

J1 J2 Jk 

S(x. ,x . ..,~ .•.• 1 x. , ••• ) C. p{x. ,x. , ••• ,x, , .... } ;· 
Jl J2 Jk Jl J2 ''k 

3o p(xj~'xj2, .... ,xjk'•••j ,. p{xj21xjl'•••,x.jk'···) ~ 

4-o p{xJ.
1

,xJ.
2
. , •••. .,xJ·k· , ••• ) = x. + L{x. -x. , •••. , 

· J1 .J2 Jr 

2. APPH.OXIMATICN 

Let S(x
0
,x

1
, •.•• ) be an IDS.Natur8lly,the po13sibility 

o:f repl8c1ng such 8 simplex with 8 finite-dimension8l .one 

(FDS in the further text) is of the great importance. 

At first,if supilxnll= +<D ,then S(ox:
0
,xl' ... ) is unlimi

ted set.and,consequently,it is not possible to replace it 
with an FDS which is necess8ry a limited set.If sup)lxnll< +<D, 

then we have the following results~ 

Theore~L2,: Let { x
0
.,xl' ••• } be a orthoe;onal set and infllxnll = 

=J..> 0 .,Then for each vector y from an arbitrary finite

dimensional subsimplex there exists a set Y(y) such that 
the following conditions are fulfilled: 

1° Y(y),S(x
0
,x1 , ••• ) 

2° Y(y) is itself an IDS 

:;
0 (V:x)(;x:EY(y))(llx-yll~~) 

Proof: Without loosing the generality in proof,we can obser

ve FDS S(x
0

,x1 ,o-o.,xk) and such yeS(x
0
,x1 , •• ..,xk) that 

k k 
Y = L'f x ( Llfn=l; lfn~o (n=O,l, •.•.• ,k)) 

n=o n n n=o 

where 'f=-'fk = max{lfnln=O,l, ••• ,kJ. 
I Case l:'f;::'2' .Then Y(y)=S(xk+l'xk+2 , ••• ) • 

Really, let xES( xk+l' xk+2 , • ...,.) .Since 



2 1'1 ·:2 II 112. 1 112' 2 II 112>- 1/2 X-Y11 = Xi• + Y ~ tiY ~ 'fk·nXk ,y ij::O<.. 

; follows 3°. 
Case ?:If<~ .. '.rhen Y{y)=.S({l-1)xk+l+'fxk+2,(1-Yhk+l+ 

~xk+3 , ••• ') • r.et us ~enote 

rhere 

-rm +m +<D 
x'=( L 'f~)(l-'l')xk+l+ L 'f~·'f'xn+l={l-'fhk+ L 'f;·'f·xn+l 

n=k+l n=k+l n=k+l 
.t follows x"ES(x

0
,x1 , ••• } ,becouse 

+<D 
(1-'1')+· L 'f"'f = I - 'f + 'f = 1 

· n=k+l n 

tn the base of definition 1 we can now conclude that the co

.dition 2° is fulfilled.Further on,we have 

llx'-yll 2 =-llx'll 2 + Uyii 2 ~Jix'U 2 ~(1-'f') 2 11xk+l11 2>~ 
i..e •. 1\x''-yll>;. .Let no\'/ x be an arbitrary ve~tor £rom 

Y(y).Accordin~ to definition l,there exists sequence 
+<D 

x~=-2: 'f'(j)((l-'f)x
1 1

-!''fx 
1

)(j=l,2, ••• } such that x"'lim x~. 
J n=k+l n c+c n-1': j+HD J 

Since 11xj-yll>~ (j=l,2, ••• ),there exists such a natural 

number ~ 
0 

that 
\llx": -y\1 -1/x; --xlll~~ 

Jo Jo 
states,hence 3° is satisfied and the proof is completed. 

Remark 1: The last theorem in the other words means that the 

good approximation of an IDS .by one of it's FDS is not poss

ible in that case,in spite of the fact that such a IDS is 

limited set.Therefore,.it makes a sence to develope the theo

ry on such a simplex,which is done. in [6] already., 

The next theorem shows that somewhere on IDS the· desi-

rable approximation is possible in local view. 

Theorem 4: Let sup\lxn\I<+'<D and let 't:>o be a arbitrary real 
+<D f'<D 

number.Let,further, y=-2. g x (L_Q =1; Qn·';;l>O (n=O,l, •• .,.)) 
n=o n n n=o n 

be such ? vector that ~ E :f;;o Qn > 1 - ..,.4-su.....;p;;;_,U,....x-n"'""ll 

states.Then for each x.ES(x
0
,xp•••)n K(y,~) ,there exists· 

y\::s(x
0
,x1 , ••• ,xk) such that nx--y'JI<E is valid,where 



K(y,~) ,as usual,denotes {x\ llx-yll< ~} "k-1 k-1 
Proof: We shall demonstrate that Y '= ( 1-L Qn )xk +'·L Qnxh 

n=o n=-a 
satisfies the proposition.Rea11y, k -HID 

llx-y'II.;;Ux'-yll+l/y-y'll<~ + (1- L Qn)·llxicll+- L Qn\lxnll < 
n=O n=k+l 

E t . II xkll k E E. E. . 
< ~ +· 4suplfxn11 +- supl\xnll·(l- L Qn).::. ~ +· 'lj: +supllxJ14sup Ux II =-E 

n=-0 n 

and the proof is completed. 
The sufficient conditions when the absolute error made 

in replacing the IDS by it's FDS is lower then given E.>O, 

followed in the next two theorems: 

Theorem 2: If 1\xnll<~ (n">k) , then for each yES(x
0
,xl' •.•.• ) 

there exists yE.S(x
0
,xl' ••• ,xk) such that lly-y"II<E. 0 

t 1 . h +<D • +<D • 
Proof: Le y= ~my. ,were Y·=~Jox 2_Jg,.l and 

jo++oo J J n=o n n n=o n 

Q ? 0 (n=O,l, ...... ) .Let us,further,denote 
n k-1 k-1 

y'=L_ rQnxn +(1-2: rgn)xk ,where \ly-yr\1<.~ •. Now we have 
n=o n=o 

k +<D 
IIY'-y'll~ lly-yrii+IIYr-y"ll.::. ~ -r(l- .:Lron)llxkll+ L ronllxnll < 

n=O n=k+1 
k k 

<~ +{1-zrgn)~ +(1-,Lron)~<E ,which proves the theorem. 
n=o n=o 

As a direct consequence of this theorem we obtain 

Theorem 6: If lim xn=a (a is vector) ,then for each E>O 
n+fo{D 

there exists an FDS which is E.-approximation of IDS 

S(x
0
-a,x1-a, ••• ) • 
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SQr.'lE SUFFICIENT CONDITIONS FOR 

CONVERGENCE OF AOR-METHOD 

Ljiljana Cvetkovid, Dragoslav Herceg 

A..BSTRl'.CT 
1e consider AOR ( Accelerated Overrelaxation method 
for a system of n linear equations with n unknowns Ax =b, 

where the matrix A has nonvanishing diagonal elements. If A 
is strictly diagonally dominant we improve the convergence 
intervals, given in [5j, for a and w. We also consider the 
convergence intervals for some matrices, which are not stri
ctly diagonally dominant. 

NEKI DOVODJNI USLOVI ZA KONVERGENCIJU AOR-·POSTUPKA. Posmr.·
tramo AOR (Aacelerated Overrelaxation) postupak za resavanje 
sistema n linearnih jednacina sa n nepoznatih Ax =b, gde ma
trica A ima nenula dijqgonalne elemente. Ako je A strogo di
jagonalno dominantna, poboljsavamo intervale konvergencije, 
date u l5J, za a i w. Takodje, posmatramo intervale konver
gencije za neke matrice, koje nisu strogo dijagonalno domi
nantne. 

1. INTRODUCTION 

We consider a system of n linear equations with n 

unknowns, written in the matrix form 

Ax = b, 

where the matrix A= ja .. J has nonvanishing diagonal elements, 
~J-

and AOR (Accelerated overrelaxation) method for the numeri

cal solution of this linear system. This iterative method 

was presented by Hadjidimos in [1!, 1978. By splitting A 

into the sum D-S-T, where D =diag (a 11 ,a 22 , ... ,ann) and S 
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and T are the strictly lower and upper triang-ular parts of 

A multiplied by -1, the corresponding A0R scheme has the fo

llowing form=: 

(1) 
kH k (E-crL)x = ((1-w)E+(w-cr)L +wU)x +we, k=O,l 1 ••• 1 

where L =D-rS~ lJ =D- 1T 1 c =D-
1b 1 E r-s the unit matrix of or

der n.- a is the acceleration parameter 1 w 'I Q_ is the overre

laxation parameter and x 0 e en is arbitrary. The iterative. 

matrix of scheme (1) is given by 

M = (E-crL)- 1 ((1-wlE+.(w-o)L-I'wU)~ a, w 

We get bounds fo-r the spectral radius p {M ) a-f the matrix 
a,w 

M in form p (M ) < G and then from G < 1 we get sufficient 
a,w o,w -

conditions for the convergence of At!R method, 

For A= !a. el e-Cn,n (= set of complex nxn matrices) we 
~J 

define for i=l,2,.r.,n 

n 
p . (A} = l r a .. r I Q1. {A) 

1 j;,l 1] 

jh 

f. =P. (U) I 
1 1 

2, CONVERGENCE OF THE AOR METHOD 

fi=Q.(U) I 
- 1 

Theorem 1. r -1 n n 
Let A = _aij € C 1 

, aii 'I 0 1 i=l I 2 I, o o In 

and a € fO,ll. Then for w,a elR 1 w'fO_,. !ole . <I, i=l 1 2 1 ••• a 1 1 

••• 1 n, p(M
0 

w) satisfies the following: , 

min 
l<i<n 

11-w[-!w-oJe .-!w[f . 
-----------~-~----~~ < 

I+!cr!e . 
al1 

!1-wl+lw-crfe .+lw!f . 
< a,1 a 1 :t 

max ---r=ra~e--. ------
l<i<n a,1 



Proof. We prove the upper bound for P (Ma w) • Let A 

' :;,e any eigenvalue of ~'f and suppose that a,.ro 

fi-wt+lw-~le +fwjf . 
I ' I > ---· (X ' i (X I lc I • 1 2 A 1= t I o,, In o 

1-~afe ·-
Ct11 

After some manipulations we have 

!A+w-1[ > lw+cr(/.-1) le 1+lw[f ., i=l 1 2, ... ,n 1 O:t ();~1 

lbiij >aPi(B)+(l-a)Qi(B}, i=1,.2, ... ,n, 

where B=[b .. ] ecn,n, B=(X+w-l)E-(w+a(l.-l))L-wU. Then 
1J 

l:heorem 2. 5. 2 from [2] shows that detB # 0 •. Since (E- OL) • 

· ( AE-M ) = B and det (E-crL} = 1 it follows det ( l.E-M
0 

_} r! 0. a, w ,w 

This contradicts the singularity of XE -M . a,w 

The lower. bound for p(M ) one proves similarly. a, ul 

Theorem 2. Let A= [aij] ecn,n, aii '/0, i=1, 2, ... 

... ,n. Then for w,a siR, wzfO, fa[(e.+e.) <2, i '/j, i,j = 
l. J 

= I, 2, ... ,n, p(Ma w): satisfies the following: 
3 

min 
i#j 

< max 
i;lj 

2 f 1- w I - l w- a r f e . +e . J - l w r ft. +£ . > 
__ _;;;_J.:..... J.:._ ____ 1_J__ 

2+ I a I (e. +e.) 
1 J 

2 II-w I+ I w--ac[ ( e . +e . ) + I w f ( f . H . ) 
1 L ____ !___L. 

2- far fei +e:i): 

Proof. We prove only upper b_ound for p (r.i ) • The 
a,w 

lower bound we obtain similarly. Suppose that M has an 
a,w 

eigenvalue A with 

2 I 1 - w r + I w- a I c e . + e . > + I w I c £ . +£ . J I A I > _2;_1 ____ .2:_ _ _.1.._ I i 'I j I 

2- I a f (e. +e . J 
l. J 

i,j=l,2, ... ,n. 

From this inequality follows that 



e. +e. £.+f. 
]A+w-11 >lw+o(A-1)J ..2-2_J-+jwl -~ 2-1., ir!j,i,j=1r2, ••• ,n, 

1 J>-+w-1j >2 (Pi(B)+Pj(B)), ifj, i,j=1,2, ••• ,n, 

where B is defined as in the proof of theorem 1. Since bii = 

=>-+w-1, i=1,2, ••• ,n and 

.!..
2 

(Pl (B) +P.(B)) >/P. (B)P.(B) 
• J - ~ J 

we have now 

I b .. I I b .. I > P . (B) P . ( B) , ii j , i , j = 1 , 2 , • • • , n • 
~~ JJ ~ J 

But then, theorem 2. 4.1 from [2] shows that detB f 0. This 

contradicts the singularity of :\E -M
0 

w· , 
Theorem 1 contains as a special case (a=l) theorem 1 

of [3], where the matrix A must be strictly diagonally domi

nant. In our case it is sufficient that A has nonvanishing 

qiagonal elements. 

Under assumptions of theorau 1 of [3] our theorem 2 

holds, but the converse is not true. 

Theorem 3. Let A= [aij] eCn,n, aii fO, i=l ,2, ••. 

• . • , n and a e [o, 1] . 

Then the AOR method converges for 

(a) max ( e . + f . ) < 1 , 
i a,~ a,~ 

2 
0 < w <min 

l 1 +e . +f . ... a,~ a,~ 

-w(1-e .-f .)+2max(O,w-1) w(1+e .-f .)+2min(O,l-w) 
max a'~ a'~ < < min --~~~.:!:..__ ______ _ 

~ 2e 4 ° 4 2e. ... a,... ... a,~ 

or 

(b) max (e.+e.-H.+f.) <2, 
. ../.. ~ J ~ J 
~rJ 

O<w< . 4 
2+e. +e·. +f. +f . 

~ J ~ J 

-.w (2-e. -e.-f.-f.) +4max (0 1 w-1) w ( 2+e. +e.-f.-f.) +4min (0,1-u 
max ~ J ~ J <o< min- ~c __ ],___.::.~_-.~.J _____ _ 
·..t-· 2(e.+e.) ·..t-· 2( + ) J..r] 1. J lrJ e. e. 

- 1. J 

Proof. We consider (a) and theorem 1. Similarly one 

can show the convergence of AOR method in case {b) using the

orem 2. 



shall prove that for all i=1 1 2 1 ••• 1 n holds 

e . +f . < 1 1 
a 1 1. a 1 1. 

-w(1-e .-f .)+2max(0 1 w-1) w(1+e .-f .)+4uin(0 1 1-w) 
___ a I 1.-~-------- < o < a I J_ a 11. => 

3) 

2e . 2e . 
a 1 1. a 11. 

11-wl+lw-ale .+lw/f . 
________ £..r_~--_2':..!_~ < 1. 

1-lale . 
a11. 

ince for a and w from (a) we have I a I e . < 1 1 theorem 1 
a 1 1. 

nd (3) 

o prove 

ase I: 

show that p(M ) <1. 
a 1 w 

implication ( 2) => ( 3) we consider 
-w(l-e .-f .) 

a11. a 1 1. 
0 < w < 1 I 2e . · < a < 0. 

a,l 

the next cases. 

hen 1-w+we . - ae . +wf . < 1 + ae . I which is equivalent 
a 1 1. a 1 1. a 1 1. a,1. 

to ( 3) • 

Case II: O<w<1 1 0 <a < oJ . 

Then1-w+we .-ae .+oJf .<1-oe .,sincee .+f .<1 
a 1 l a,l a,l ~,l a,l a,l 

Case III: O<w<l, 
tu ( 1 +e . - f . ) 

u\ < 0 < --~2:_ -...0.L~ 
2e . 

a 1 l 

Then 1-w+oe .-we .+wf . <1-oe . 
a 1 l 0. 1 l a 1 l 0. 1 l 

Case IV: 

Then w-1 +we .-ae ,+wf . < 1+oe .. 
et 1 1. a 1 1. 0. 1 l et 1 l . 

Case V: 
2 

1 < uJ < 1 +e . + f . 1 0 < o < 10 • 
a 1 1. a 1 l 

Then w-l+we .-ae .+ulf . <1 -ae . 
a 1 l a 1 l a 1 1. a 1 l 

Case VI: 2 
1 < w < 1 +e . +f 

a 1 1. o. 1 i 

-w+we .-wf .+2 
111 <o < __ _£_l_l __ CJ. 'l __ 

2e . a 1 1. 

Then w-1+ae .-we .+wf . <1-ae . 
a 1 l 0. 1 l a,1. a 1 1. 
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Renark. If in case (a) of theorem 3 we assume a= I, 

then for strictly diagonally dominant matrices AOR method 

converges if 

max 
i 

0 < w_ <min 
i 

2 

H-e.+f. 
l l 

-uJ (1-e. -f.) +2max (0, w-1) 
l ~ < 

2ei 
a <min 

i 

w O+e. -f.) +2m in (0.,1-w) 
l l 

This convergence intervals · for .w and a are larger than the 

corresponding intervals from theorem 3 of J5J. 
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SoME MODIFIED SQUARE ROOT ITERATIONS FOR THE SIMULTANEOUS 
DETERMINATION OF MULTIPLE COMPLEX ZEROS OF A POLYNOMIAL 

Miodrag s. Petkovic, Lidija V. Stefanovic 
ABSTRACT: 
4pplying Newton's and Halley~ coPrection, some modifications of squ
:zre root method~ suitahle for simultaneous finding multiple complex 
geros of a polynomial with the known order of multiplicity, are obta
ined in the paper, The convergence order of the proposed (total-step) 
nethods is five and six respectively, Fux>ther improvements of these me
thods are performed by approximating to all zeros in a serial fashion 
'ASing new approximations immediately they become availahle (the so
-;alled Gauss-Seidel approach). Faster convergence is attained without 
zdditional calaulations. The lower bounds of the R-order of convergen
'Je for the serial (single-step) methods are given, The considered ite
rative processes aPe illustrated numericaly in the example of an alge
braic equation. 

NEKE MODIFIKOVANE KVADRATNO KORENSKE ITERACIJE ZA SIMULTANO 
ODREDJIVANJE VISESTRUKIH KOMPLEKSNIH NULA POLINOMA. Prime
njujudi Newtonovu i HaZleyevu koPekoiju u radu su dobijene neke mo
difikaoije metoda kvadratnog korena~ pogodne za simultano nalazenje vi
sestrukih kompleksnih .nula poZinoma poznatog reda visestrukosti. Red 
konvergenoije predlozenih (total-step) metoda je pet i sest respekti
vno. Dalja poboljsanja ovih metoda su postignuta aproksimirajudi sve 
nule u serijskom postupku korisdenjem novih aproksimaaija odmah kada 
postanu dostupne (tzv. Gauss-seidelov pristup). Brza konvergencijaje 
dobijena bez dodatnih izraaunavanja. Za serijske (single-step) metode 
date su donje graniae R-reda konvergenoije. Razmatrani iterativni pro
cesi ilustrovani su numeriaki na primeru algebarske jednaaine. 

1. IrHRO-DUCTI ON 

The iterative methods for the simultaneous determina

tion of mu}tip1e zeros of a polynomial have been developed du

ring the last decade as extensions of the known methods for 

simple zeros. M .R. Far-mer. and G. Loizou [4] have derived a 

class of iterative methods with arbitrary order of convergen

ce. The basic imperfection of methods from this class with 

high convergence order (greater than three} is a demand for 

great number of numerical operations t which decrease their 

effectiveness. Several modifications of the basic Maehly' s 
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method [10] , which enable very fast convergence by reasonab

ly small numerical operations, have been proposed in [12] • In 

recent years a lot of attention has been given to the study of 

this topics in interval arithmetics (see [6] , [7], [15] , [16] ) . 

In this paper we give some modifications of square root 

method (also known as Ostrowski's method [14] ) which provi

de: ( i) simultaneous determination of multiple polynomial zeros 

whose the multiplicities are known; ( ii) acceleration of conver

gence with small number of additional calculations in relation to 

the basic method. 

2. SOME MODIFICATIONS OF SQUARE ROOT ITERATIONS 

Consider a monic polynomial P of degree n ~ 3 

n n-1 k m. 
P(z) = z +an_1 z + ••• +a1z+a

0 
= L (z-r.) 

j=1 J 
(a. E C) 

1 

'A7 ith real or complex zeros r 1 , ••• , rk having the order of mul

'tiplicity m1' .•• ,mk recpectively, where m 1 + • • • + mk = n. Let 

z 1 , •.. , zk be distinct reasonably good approximations to these 

zeros and z'i be the next approximation to ri using some itera

tive sheme. 

Let m be the multiplicity of the zero r of P. By the 

functions 

u(z) 

we define 

( 1) G(z) 

( 2) N(z) 

(3) H{z) 

P'( z) 
P( z) v(z) 

u{z) [u(z) -v(z)] 

P 11 (z) 
p' ( z) 

( Ostrow ski's function) , 

-u{~) (Newton's correction), 

[ 
1 -1 

2 v(z)-(1+m)u(z)J (Halley's correction). 

We recall that the correction terms ( 2) and ( 3) appear in the 

iterative formulas 

(4) 

( 5) 

( Shroder' s modification of Newt
on's method for multipie zeros, 
see [17]), 

(modification of Halley's method, 
introduced by Hansen and Patrick 
[8] for multiple zeros), 



:he convergence order two and three recpectively. We 

tote that the order of multiplicity in the iterative formulas 

4) and ( 5) take the values m = mi (i = 1, .•. ,k). 

Using the logarithmic derivative of P we obtain 

d2 --z In P(z) 
dz 

P'(z)
2

- P(z)P 11 (z) =G( )= ~ ( )-2 
2 z t., m. z-r. 

P( z) j=1 

The valv.e of Ostrowski's function at the point z =z. is 
1 

k 
<;' ( )-2 t., m. z. - rJ. 

j=1 J 1 

wherefrom 

(6) 

-1/2 

). m.(z.-r.)-2 ] (i=1, ••• ,k). 
jjli J 1 J * 

The symbol *denotes that one of two values of square root 

is chosen. One criterion for the choice of the appropriate va

lue of square root has been established by Gargantini [7], If 

all zeros of P are real, then this criterion reduces to the 

choice of sign which coincides to the sign of (real value) PP; 

r. on 
J 

Setting r. i:! z. in ( 6) and taking some approximations of 
1 1 

the right-hand side of the identity ( 6), some modified 

iterative processes of square root type for simultaneous fin-

ding of multiple complex zeros of a polynomial can be obtained 

from ( 6) • The convergence analyses of these methods is ess

entially ·the same to that of the iterative methods considered 

in [1], [2, Ch. 8], ~1], and so, it will be omitted. For the 

serial (single-step) methods, _where new approximations are 

used in t:he same iteration, we shall use the concept of the 

R-order of convergence (see [13]). The R-order of conver

gence of an iterative process IP with. the limit point given 

by the vector r; = [r1 · • • rk] T (where r 1 , •.. ,rk are poly

nomial zeros) will be denoted by OR ( (I P) , r) • 

1° For r.: = z. (j f i) we get from (6) the parallel (total-
J J 

step) square root iteration (shortly TS): 

( 7) 

This method has been considered in [15] as a special case of 

the generalised root iteration. It has been proved that the 
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__ nvergence order of TS-method ( 7) is four. Note that the 
I 

iterative m-ethod of the form { 7) in terms of circular regions 

has been analysed by Gargantini [ 7] . 

the 

(8) 

Taking r.: =~. (j <i) and rj: =z. (j> i) in {6), we obtain 
J J . J 

serial (single-step) square root iteration ( SS): 

-1/2 
z.=z.-vfn.[G(z.)- I m.(z.-z.)-2 - I m.(z.-z.)-2 ]-~~ 

l l l l j<i .l l J j>i J 1 J 

(i=1, ••• ,k). 

It has been proved in [16] that the R-order of convergence 

of SS-method is at least 3+llkE(4·,
2
5
7 ), where\.lkE(1,

1
;) 

k 
is the unique positive zero of the eq1,1.a tion \.1 - Jl- 3 = 0 ( k ~,2) • 

3° Putting r.:=z.+N(z.) (itj) in (6), where N(z.) is New-
J J J J 

ton's correction given by (2), we obtain the parallel (total-

step) square root method with Newton's correction ( TSN): 

2] -1/2 
(9) z 1 zi -/m."[G(z.)- I m.(z.-z.-N(z.))- * 

1 1 jti J 1 J J 

(i=1, ••• ,k). 

Using similar procedure as in [11] , it can be proved that the 

convergence order of the modified method ( 9) is five. 

4 ° The iterative process ( 9) can be accelerated by approxi

mating all zeros in a serial fashion, i.e. using new approxima

tions immediately they become available (the so-called Gauss

Seidel approach). In this way, substituting r.: = ~. (j < i), 
J J 

r.: = z. + N(z.) (j > i) in (6), we derive single-step method 
J J J 

with Newton's correction ( SSN): 

A [ -2 -2] -1/2 (10) z.=z . .,lffi, G{z.)- L m.(z.-z.) - L m.(z.-z.-N(z.)) 
l I 1 l j<i J l J j>i J l j J * 

( i = 1' ••• .,k). 

For the iterative process { 10) we can prove the following 

statement concerning the convergence order: 

THEOREM l; The ~(JIJ)er bound of the R-o't'der of oonvergenae of the 

iterative method (10) is given by 

OR((lO),J!') ~3 + Tk E (5,7) 

where Tk E (241 4) is the unique positive root of the equation 

/-2k-l(t+3)=0 (k~-2). 



._,imilar as for TSN-method, we can app1y Halley's corr

ction (3) for multiple zeros. Taking r.: = z. + H(:z.) (j f i) in 
J J J 

6), we obtain total-step method with Ha11ey' s correction 

,TSH): 

z. = z. -,liil;[G(z.)- Y m.(z.-z.-H(z.))-2]-
1

/
2 

(11) 
1 1 1 1 jFi .1 1 J J . * 

(i=1, ••• ,k). 

The iterative method constructed on the basis of formula ( 11) 

has the convergence order equal to six. 

6° Finally, setting r.:=z. (j<i), r.:=z.+H(z.) (j>i) in (6), 
J J J J J 

we obtain single-step method with Ha11ey' s correction ( SSH): 
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J 
-1/2 

{12) z.=z.-,r'i1;'fG(z.)- I m.(z.-z.)-2 - I m.(z.-z.-H(z.))-2 
I I IL I j<i J 1 J j>i J I J J * 

(i=1, ... ,k). 

The fo11owing asser·tion for the method ( 12) is valid: 

THEOREM 2: The lower bound of the R-order of convergence of the 

iterative .method (12) is given by 

OR((12),p} ~ 3(1 +ak) E (6,8), 

where ak E ( 1,-i) is the unique positive root of equation l- a- 1 = 0 (7< ~- 2). 

The increase of convergence of single-step methods ( 8) , 

( 10) and ( 12) (in a serial fashion) , compared to the corres

ponding total-step methods ( 7), ( 9) and ( 11) (in a para11el 

fashion), is larger if the number of different zeros is sma

ller. The acceleration of convergence is attained without add

itional calculations; moreover,. single-step methods occupy less 

storage space in digital computer (because the calculated app

roximations immediate!¥ take positions of the former ones). 

In practical realization of the iterative methods ( 9 )-( 12) 

with Newton's and Halley's corrections, before determination 

. of new approximations it is desirable to evaluate u( z) and v( z) 

and then, by (1), (2) and {.3) calculate G(z) and the wanting 

corrections N(z) or H(z). In such a way, the methods with 

correction terms claim slightly more of numerical operations 

compared to tbe basic fourth order method ( 7) • This point at 

the effectiveness of the ·proposed modifications of square root 

methods. 



.), NUMERICAL RESULTS 

In practice, it is convenient to apply a three-stage glo

bally convergent composite algorithm (see [ 4]) : 

(a) Find an inclusion region of the complex plane cont

aining all the zeros of a polynomial. 

(b) Apply a slowly convergent search algorithm to ob

tain initial approximations to the zeros and calculate their re

spective multiplicities. The multiplicities of these approxima ti

ons can be estimated, for e~ample, using ( [9]) 

m. = lim 
1 

u' ( z). 
z. -+ r. 

1 1 

Other limiting formulas are described in [3] , [18 J etc. 

(c.) Improve starting approximations with a rapidly con

vergent iterative processes (for example, applying any of the 

algorithms ( 7) -( 12)) to any required accuracy. 

In this section we shall apply the considered iterative 

methods (7)- (12) of square root type for the stage (c). In 

order to test these methods the routine on FORTRAN was 

realised on HONEYWELL 66 system in double precision arith

metic (about 18 significant digits). Before calculating new app

roximations the values u(z('-)) and v(z('-)) (t- =1,2, •.• is the 

iteration index, i = 1, •.• ,k), necessary for evaluation of Os

trowski's function ( 1) , where calculated. The same values 

were used for calculation of Newton's and Halley's correc

tions in the formulas ( 9) - ( 12). 

The proposed modifications were illustrated numerically 

in the example of the polynomial 

P( z) = z 9 - 7z
8 

+ 20z 7 - 28z
6 - 18z 5 + 11oz4 - 92z3 + 44z 2 + 345z+225 

whose zeros are r 1 = 1 + 2i, r
2 

= 1- 2i, r
3 

= -1, r
4 

= 3 with the 

multiplicities m 1 = 2, m 2 = 2, m
3 

= 3, m
4 

= 2. As the initial app

roximations to these zeros the following complex numbers we

re taken: 

z 1 (0) =1.8+2.7i, z
2

(0) =1.8-2,7i, z
3

(0) =-0.3-0.8i, 

( 0 ) - 2 3 0 7' z4 - . - . 1. 



~·· - ... Jte of crude initial c•.pproxima tions, the presented it era ti

ve methods demonstrate very fast convergence. Numerical re

sults, obtained in the second iteration, are displayed in Table 1. 

i Re { z ( 2)} Im{z.( 2)} 
i 1 

1 0.999999853800923892 2.000000112716998844 

TS 2 0.999999826741999847 -2.000000351383949125 

(7) 3 -0.999999859207295616 ··8.18 X 10- 7 

4 3.000000527270300803 -3.48 X 10-8 

1 0.999999939617346251 1.999999964305993363 

ss 2 1.000000861310650873 -2.000000509862992614 

(8) 3 0.999999999709498985 1. 35 X 10-9 

4 3.000000000000030662 7,16 X 10-llf 

1 0.999999455077856744 2.000000212961094747 

TSN 2 1.000000018147137107 -2.000000068835695135 

(9) 3 0.999999974528732211 3,43 X 10-8 

4 3.000000722708680682 -9,58 X 10 
-8 

1 0.999999894885117145 2,000000042747320793 

SSN 2 0.999999994177457521 -2.000000000709903145 

( 10) 3 -1.000000000007845003 3.82 X 10-ll 

4 2.999999999999997525 -6.58 X 10- 15 

1 1.000000000098386276 1.999999999890580897 

TSH 2 1.000000000450329186 -2.000000000521585396 
( 11 ) 3 -0.999999999986166747 -2.93x10- 12 

4 3.000000000368704406 -6.92 X 10- 1
0 

1 1.000000000032764666 2.000000000002146278 
SSH 2 1.000000000000674921 -1.999999999997025086 
( 12) 3 -1.000000000000001322 2. 74 X 10- 15 

4 3.000000000000000383 -2,01 X 10 
-16 

Table 1 

We note that the lower bounds of the suggested serial 

methods in our example (k=4) are OR((8),r) ~ 4.453, 
OR ( ( 10 ) , r) ,;, 5. 586 and OR ( ( 12) , r) ~ 6. 662 • 
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ABSTRACT: 

THE GENERALIZATION OF TEN RATIONAL 
APPROXIMATIONS OF ITERATION FUNCTIONS 

Dusan Ve Slavic 

I .Newton (1676) ~ E. Halley (1694), P. L. Cebysev (1838), E. T. 
Whittaker (1918) 9 E.Durand (1960) and J.F.Traub (1961) gave 
the one-point iteration functions for solving the equation 
f(x)= o. The general result is given here which contains the 
mentioned functions as particular cases or gives corrections 
of some coefficients in these functions in order to increase 
the convergency ord~r of the methods. In addition, the ques
tions of autorship priorities are considered. 

GENERALIZACIJA DESET RACIONALNIH APROKSIMACIJA ITERACIONIH 
FUNKCIJA. I. Newton (1676), E. Halley (1694), P. L. Cebysev 
(1838), E. T. Whittaker (1918) 1 E. Durand (1960) i J. F. Traub 
(1961) dali su jednotackaste 1teracione funkcije za resava
nje jednacine f(x)• o. Ovde je dat opsti rezultat koji 
sadrzi pomenute iteracione funkcije kao posebne slucajeve ili 
daje korekcije nekih koeficijenata u tim funkcijama u cilju 
povecanja reda konvergencije metoda. Pored toga, razmatrana 
su i pitanja autorskog prioriteta. 

Let u, A, B, C be defined by 

u"' f/f1
, A,.f"/(2f1

), B=f111 /(6f1), C=f1v/(24f 1 ), 

let r be the order of convergency of the method and let 
xn+i • Yr(xn)• The classical results then become: 

(1) y2 .. X - u Newton 

(2) 7:; "" X- u/(1-Au) Halley 

(3) Y:; "'X 
2 - u- Au Cebysev 

(4) y4 .. X- u - A u2 - ( 2 A 2 - B) u3 Cebysev 

(5) y4 "' X-U (1 -Au) /(1 - 2A u + B u2) Whittaker 

{6) y2- X - u/ (1- 2A u) Durand 

(7) y2 .. X - u (1-2Au)/(1-3Au+3B u2) Durand 
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(8) y4 .. x- u(1-3Au+3Bu2)/(1-4Au+(2A2+4B)u2-4cu3) Durand 

(9) y4 "" x - u (A- (A2-B) u) I (A- (2 A2 - B) u) Durand 

(10) y4 .. x-u /(1- Au- (A2-B)u2) Traub 

The literature is full of disagreements conserning the 
authors of these formulas. It is claimed that already Heron 
(two millenia ago) had known the iteration procedure x1) o, 
xn+1 = (xn + z/xn)/2 tending to z112 , which is a particu
lar case of formula (1) for f = x2 - z (z) 0). 

The method of tangents (1) is related to the names: 
Ch'in Chiushao (1247), F.Vi~te (1600), T.Harriot (1611), A. 
Girard (1629), W.Oughtred (1647), I.Newton (1664, 1666, 1669, 
1674, 1676, ••• ), J.Wallis (1685), J.Raphson (1690), ••• 

The method of tangent hyperbolas (2) is related to the 
names: E.Halley (1694), J.H.Lambert (1770), P.Barlow (1814), 
Hutton, E.Kobald (1891), E.T.Whittal{er (1918) 9 J.V.Uspensky 
(1927), V.A.Bailey (1941), J.S.Frame (1944), H.S.Wall (1948) 9 

H.J.Hamilton (1950) 9 G.s.Salehov (1951), ••• 

The method of osculatory inverse polynomials (3) and (4: 
is related to the names: L.Euler (1748), H.BUrmann (1799), 
P.S.Cebysev (1838), E.Schroder (1870), E.Bodewig (1935), ••• 

The method (5) is related to the names: H.Wronski(1811) 1 

A.de Morgan (1868), E.T.Whittaker (1918), H.J.Hamilton (1946)~ 
I.Kiss (1954), R.W.Snyder (1955), E.Durand (1960), V.L.Zagus
kin (1960), A.P.Domorjad- D.K.Lika (1965), ••• 

The uniform and simple manner of writing the iteration 
functions enables one to see more easily the iterations bet
veen then. Each formula from (2) to (10), neglecting the 
higher degrees of u, becomes formula (1). Neglecting the 
term with u2 formula (1 0) becomes (2). Neglecting the term 
with u3 formula (4) becomes (3). 

Let ~' b, c be arbitrary parameters. Formula (10) 
is equivalent to 

(1 + aA u + (bA2 + cB) u2 ) 

y4 "' x - u (1 -Au- (A2-B) u2) (1 + aA u +(bA2 + cB) u2) ' 

wherefrom, upon neglecting the terms with u3 and u4 , we get 



29 

11) 
1 + (a-1 )Au + ( (b-a-1 )A2 + (c+1 )B) u2 

Neglecting terms with u2 from (11) it stems: 

(12) y
3 

= x - u (1 + aA u) I (1 + (a-1)A u ) • 

Neglecting terms containing u, from formula (12) it stems (1). 

From (12) for a= 0 it follows (2), while for a"' 1 it 

follows (3). For a= -1 we get the correction of formula (6) 

( 13) y 3 "' X - u ( 1 - A u) I ( 1 - 2A u ) • 

~ormula (13) stems also from (5) by neglecting the terms with 

u2 • 

From (11) for a=1A b=2/\c=1 it stems (4), for a=-1 

f\ b = c = 0 it stems (5), for a = -b = c ...,. + ro it stems (9), 

for a =b = c = 0 it stems (10). 

For a= -2 1\ b = c = 0 or a= -2 A b = -1 A c = 0 from for
mula (11) it stems the correction of formula (7) 

( 14) y 4 = x - u ( 1 - 2A u) I ( 1 - 3A u + (A 2 + 3B) u2 ) 

(15) 

For a= -3 A b = 0 1\ c = 3 from formula (11) it stems the 
simplified formula (8) 

Formulas (1), (12), (11) are general rational approxima

tions of one-noint ~teration functions for solving the equa
tions in a sufficiently close neighborhood of the equation root, 

About the stages of solving the equation, see Slavic (1982). 

A.Dordevi6, N.Z.Klem, G.V.JI1ilovanovi6, D.S.Mitrinovi6 9 

N.Obradovic, n.B."Popovi6, D.D.Tosi6, :P.H.Vasi6 
pRper in manuscript and have made some valuable 

sur:r;estions. 

have read this 
remarks and 
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ONJ':-POINT ITERATION FUN0TIONS OF ARBITRARY CONVERGENCE ORDER 

Dusan v. Slavic 

AB<iTRACT: 
The approximation of iteration functions for solving the equa
tion f(x) • 0 of an arbitrary convergence order, containing 
the values of the function f and its derivatives only at one 
point! are dealt with in the present paper. Though the methods 
are \nth the arbitrary convergence order r, the coefficients 
of methods up to r = 5 were calculated effectively here. All 
the methods dealt with here contain the Newton tangent method 
as their basic approximation for r= 2. Two general one-point 
iteration functions are introduced. 
JEDNOTACKA~T~ ITER~CIONE FUNKCIJE PROIZVOLJNOG REDA KONVERGEN
CIJE. Ovde su razmatrane aproksimacije iteracionih funkcija 
za resavanje jednacina f(x) = 0 proizvoljnog reda konvergen
cije koje sadrze vrednosti funkcije f i njenih izvoda samo u 
jednoj tacki. Iako su metodi sa proizvoljnim redom konvergen
cije r, ovde su koeficijenti metoda efektivno izracunati do 
r = 5. Sve metode ovde razmatrane sadrze Newtonov metod tange
nata }{ao svoju osnovnu aproksimaciju za r "'2. Uvedene su dve 
opste jednotackaste iteracione funkcije. 

Let r be the convergence order of the method, Yr the 
iteration function ~+1 = Yr(xn) and let 

f u =
f' 

f" A "' 
2 f' ' 

f'" c = --
24 f 1 

' 

P.L.Cebysev and others (see t1tl) gave the results which, 
in the notations given here, can be presented as 

r-2 
( 1 ) y = x - u " pk uk 

r k';:o 
where 

2 
p2 = 2 A - B, 3 p3 "" 5 A - 5AB + C, ••• 

The exnansion (1) is equivalent to the power series of the in

verse function. 
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E.T.Whittaker gave the formula 

lAB Cl u4 
A u2 lt~l u

3 1 A B 
u 1 A (2) Yr "' X - u ---- ,_ GOO 

1 1~ tl 1
1 All~ t ~I '1 A Bl 

1 ABC 
u1AB 

u 1 Ou 1 u1A Ou1A 0 u 1 0 Ou 1 

where on the right hand side r terms are to oe taken. Formula 

(2) contains the Halley for~ula. 

y3 "" x - u I ( 1 -Au) • 

E.T.Hamilton provided the method 

( 3) Y r = x - u Rr-i I Rr , 

'\<!here 

R1 "" R2 = 1 , R3 = 1 - A u , R4 = 1 - 2 A u + B u2 , 

R5 = 1 - 3 Au + (A2 + 2 B) u2 - C u3 , 

Method (3) is equivalent to method (2). 

E.Durand gave an analogous result: 

( 4) Yr = x - u Tr_1 I Tr , 

\!There 

T1 = 1 ' 

T4 :::: 1 

T5 = 1 

Starting 

(5) 

T2 = 1 - 2A u, T3 "' 1 - 3A u + 

- 4 A u + ( 2 A 2 + 4 B) u2 - 4 C u3 , 

- 5Au+ (6A2 + 5B) u2 - (5AB+ 5C)u3 + 

from (1), by means of the formula 

k 
qk "' - L P· qk_1· (k '> 0) , 

i=1 J. 

we get the formula 

(6) 

with the coefficients: 

3 B u2 , 

5D u4 , 

qo = 1' q1 = -A, q 2 "' -(A2-B), q'3 = -(2A3 -3AB+C), 

".:quation (6) contains the Traub formula 

Y4 =X-u/ (1-Au-(A2-B)u2) • 

... 



Startine; from (6), by means of equation (5), we get the 
)ntinued fraction 

rhere 

y = Xr 

u u 11 u 

33 

... 
'ormula (7) contains the Halley formula 

y3 = x- u/(1-Au), 

s well as the Durand formula 

y4 = x - u (A- (A2..:B) u) I (A- (2A2-B) u) • 

If the numerator and the denominator of the 
6) are multiplied by the expansion 

2 2 3 3 ,8) 1 + aAu+ (bA +CB)u + (dA +eAB+gC)u + 

fraction in 

e o o 9 

where a, b, c, d, e, g, ••• are arbitrary coefficients, then 
by the method of undefined coefficients the following expansion 

is obtained: 

(9) 

where 

v 0"' 1' 

v1 caA, 

2 v2 =bA+cB, 

v
3 

= dA3+eAB+gC, 

wo = 1 ' 

w1 ::(a-1)A, 

w2 = (l:i-a-1) A2 + (c+1) B, 

w3 = (d..:b~a-2)-~3+(e-c+a+3)AB+(g-1 )C, 

Formula (9) contains Slavic's formulas 

y3 =x-u (1+aA.u)/(1+(a-1)Au) 

1 + aA u + (bA2+cB) u2 

y 4 "' X - U 
1 + (a-1 )Au+ ((b-a-1 )A2+(c+1 )B) uz- • 

If the numerator and the denominator of the fraction in 
(f>) are multiplied by an arbitrary parameter t and if +1 -1 
Rre added to the denominator, we get 



4 

/( 

. r::2 k \'1 

y r "' x ,;.. t u ,t- 1 + ( 1 + J,;,;
1 

t qk u } ) • 

Upon squaring the expression in brackets we get 

(i 0) Yr = X - t u I (t- 1 + (:t: hk ukr 12
)' 

where 

2 h
0 

1, h; "'-2tA, b2 = t(t-2)A + 2tB, 

h
3 

= 2t(t-2) A3- 2t(t-3) AB- 2t C , 

Formula (1 0) contains: for t = 2 the Euler formula 

y3 = x- 2u/(1- (1-4A u) 112 ), 

for t = 1 the Ostrowski formula or the Durand formula 

y 3 = x - u / (1 - 2 A u) 112 , 

for t = n/(n-1) the Laguerre formula 

Y
3 

"' x - n u / (1 + ( (n-1 ) 2 - 2n(n-1) Au) 1 /2) 

(n is the degree of the polynomial whose zero is sought), thE 

general Hansen-· Patrick formula 

y3 = x- tu / (t-1 + (i -2tAu)112 ), 

and for t = 2 the Traub formula 

Y4 = x- 2u / (i + (i -4Au+ 4Bu2)1/2 ). 

Equations (9) and (10) are generalization of more above 

mentioned one-point iteration functions. 

A.Dorctevic, G.V.JVfilovanovi6, D.S.l'~itrinovic, N.OhradoviC 

D.B.Popovi6, D.D.Tosi6, P.r~.Vasi6 h2ve read. this paper in ma

nuscript and have made some valuable remarks and sugestions. 
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)N THE CHOICE OF THE INITIAL APPROXIMATION IN SOLVING OF THE 
OPERATOR EQUATIONS BY THE NEWTON-KANTOROVI~ METHOD 

Milenko Cojbasic 

BSTRACT: 

he iterative procedure (see [2]) for the choice of the initial approxima
ion is generalized for the aase of solving the equation P(x)=O, where P 
s a Freahet differentiable operator in a Banach space X. Separately, we 
?nsider the case when P is a integral operator. A numerical example is 
Z:ven. 

IZBORU POcETNE APROKSI~1ACIJE PRI REsAVANdU OPERATORSKIH JEDNAciNA NEW
JN-KANTOROVIcEVOM METODOM. Iterativni postupak (v. [2]J za izbor pocetne 
?roksimacije, generaZisan je na slucaj resavanja jednacine P(x)=03 gde 
~ P Freahet diferencijabilan operator u Banach-ovom prostoru X. Razma
oa se primena na integralne jednacine. Dat je numericki primer. 

1. INTRODUCTION 

Let P denote a Frechet differentiable operator in a Banach space 
X. To find a solution x=x* of the equation 

(1) P(x) = 0, 

one often applies Newton-Kantorovic's method, whichli::onsists of the constru

ction of the sequence {xn} defined by 

(2) xn+l = xn-[p'(xn)r1.P(xn) n=O,l ,2, ... , 

starting from some suitable chosen x
0
EX. The sufficient conditions for the 

success of this procedura are given by thefamoustheorem of L.V.Kantoro

vic [1]: 

THEOREM 1. If the conditions are satisfied 

1) For the initial approximation x
0

, the operator 

P' (x
0

) (E:B(X, V)) has inverse, and llr 
0

!1 .2_ B
0 

2) II P ( x
0

) II .2_n
0 

3) Second derivative P"(x) is bounded in the re(jion defined by (4); 

i.e. IIP"(x)II.2_K; 
4) The constants B

0
,n

0
,K satisfy the inequality 

2 1 (3) h = B0n0 K.2_ 2 
Then the equation (1) has the solution X*, which can be find in the ball 

defined by 
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l-lf.:21l 
(4) llx-x0 II.:_N(h0 ).n0 = h 0 .n0 

0 

and the successive approximants xn of the iterative procedure (2) converge 
to x*. For the rapidity of convergence is valid 

n 
llxn-x*ll.:_ ~d2h0 ) 2 -l .n

0 
• 

2 
Now let the operator P be integral operator defined by 

1 
(5) y(s) = x(s)- f K(s,t,x(t))dt; 

0 

and the sequence xn(s) is formed ot the next way: the initial approximati-
on x

0
(s) is given. The next approximation x1(s) is defined from the linear 

integral equation 1 
x1 (s)-x

0
(s)-JK' x(s, t,x

0
(t)) (x1 (t)-x

0
(t))dt =£

0
(s), 

where 1 ° 
£ 0 (s) = f K(s,t,x

0
(t))dt-x

0
(s), 

0 
The inequality (3) in this case becomes 

2 1 ( 6) h = ( B+ 1 ) • n. v~ 2, 
where, for the initial approximation x

0
(s),the kernel K~(s,t,x0 (t)) =K(s,t) 

has the resolvent G(s,t) and 
1 
flG(s,t)ldt<B; 02s.:_l, 
0 -

where n,K have the same meaning as in the theorem 1. 

2, THE CHOICE OF THE INITIAL APPROXIMATION 

One of the most difficult problems in solving the equation (1) by 
the Newton-Kantorovic method is the choice of the initial approximation 
x

0
• In the paper [2] is given an iterative procedure for defining the ini

tial approximation in solving the nonlinear system of equation by the Ne
wton-Kantorovic method, which after finite' number of steps automatically 
becomes the Newton-Kantorovic method. We ~till genera 1 ize the method on the 
case in solving the operator equation (1), 

The iterative procedure (2) is replaced by 

(7) xn+l =xn- [P~ (xn)J -
1 

[P(xn) -anP(x0)] (n=O, 1, ••• ), 
where 
(s) [o 1 1 ( 1 3 1 l]. 

an=max '- 2K IIP(xolll -,j[p•(xn)r1112 + l[i~n li[P'(xi)rlll2 

The equation (7) can be taken in as the realization of the Newton-Kantoro
vic method for the equation 
(9) P(x)-anP(x0 )=0 , anc;.[o, 1], 

LEMt~A 1. If the operator rr•(x
0
)T 1 exists then: 
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(a) The condition (3) is satisfied for each x , which is obtained n 
y the Ne~rton-Kantorovic method for the equation (9); i .e.exists [P' (xnlT 1 

nd 

1 10) 2KII [P• (xn)r 
1

11 
2

.11 P(xn)-anP(x
0

) II:::_ 1 

{b) an is non increasing seauence; i.e. an+l :::_an. 

Proof. ll/e prove the lemma by induction (see[2Jand [5]). For n=O the 

statement is trivial. We suppose that the inequality {10) is valid. Then 

we get for (n+l)-st step 

(11) II xn+l-xnll.::ll (P'(xn)r
1

11 .11 P(xn)-anP(x0 )11 < 1 -:.,-;:--. 
- 2KII [P'(xn)] II 

Now let us prove that [P'(xn+l)r1 exists. Using {ll) we get 

II-[P'(xn)r
1

.P'(xn+llll.::ll [P'(xn)r
1

11.11 P'(xn+l)-P'(xnlll_::i: 

::KI! [P'(xn)J-111 .IJ xn+l-xnll :::_ ~ <1. 

Using the Banach theorem we conclude that the operator 

( 12) H = (I- ( I- [P' ( xn)] -l • P' ( xn+ 1 ) ) ) 

has inverse and that is II H- 1 11 <2. From (12) ~1e simply get 

II H-111 =II [P'(xn+l)rl.r-;-(xn)ll :::_ 2, 

and it follows that exists [P'(xn+l)r1 ant that is 

(13) II [P'(xn+llT
1

11.:: 2.11 !J''<xn)r
1

11. 

· Using (13) we get 

( 14) 1 ( 1 _ I )>O. 
an-an+l = 2KII P(xo)ll. II[P'(xn+l)rlll2 411 [P'(xn)rlll2 

Now, using the analogous Taylor's formulae (see (lJ) for differentiable 

operators we find 

!I P(xn+l)-an+l P(x0 )11 :::_11 P(xn+l)-P(xn)-P'(xJ(xn+l-xn)II+;JP(x0 )l~(an-an+l) _2 

JIP"(xn)ll.ll xn+l-xn112 . 
< -·----+II P(xo)ll •. (an-an+l). 

Finally using (11) and (14) we prove that the inequality (lo) is valid, 

~1hich together 1~i th ( 14) proves the 1 emma. 

Let us consider a convex region G which includes the solution x* of 

the e6]uaHor-1 (1), Suppose il!l G. for the opi>!rator Pt:C2(G), exi·sts ·IP'{x)l-l 

fm· each xift, and P(x 1);-!P(x2) for x1;-!x 2; x1,x2EG. Then x* is the unique so

lution of the equation (1) in G. 

THEOREM 2. For each xo'.G the iterative procedure (7) for finite nu

mber of steps n
0 

Teads to the point x
0

,for which the condition (3) of the 



m:!wton-Kantorovic method is satisfied, and an=O, for n~n0 • 

l'roof. We first prove that the sequence!! [P'(x )rl11 Is bounded, \1le 
l n 

suppose the opposite; i.e. that II [P• (xn)r 11-+=,n-roo, By the lemma 

an4a ~ [o, 1], then by {10) P(xn)4aP(x
0
). From the definition of the region 

G and characteristics of mapping P, we conclude that P{G) is a convex re

gion, P{x
0

)EiP{G) and P{x*)=OEiP{G). Therefore is aP(x
0

)EP{G). But then 
x = P-l (aP(x

0
) )(iG, 

and xn-+x. So 

II [r• (xn)r111-+ll [P• (x)T.111-+<» , 

which is in contradiction with assumption. Thus II [P'(xn)]-1 11 ::_L<oo, Using 

{8) and the lemma we get that for 

n :_no:. (2KL
2 1! P{x

0
) II -1), 

O'.n = 0 and the condition for a pp 1 yi ng the Newton -Ka ntorov i c method is sa

tisfied. 

NOTE l. In the paper [2] is considered the case when P is the system 

of nonlinear equations. 

We suppose that for the integral equation (5) the condition {6) is 

not satisfied. Using the lemma 1 for defining the initial approximation we 

and Gn{s,t) is the resolvent of the integral equation with the kernel 

K~{s,t,xn(t)), Using theorem 2 the successive approximative \'Jhich are get 

by solving the linear integral equation (15) lead to xn for which is the 

condition {6) for applying the Newton.-Kantorovii' method ~s satisfied. 

( 18) 

3. NUJVIERICAL EXJlJ1PLE 

The inte~ral equation is given 
2 1 

x(s) = l-0.4854.s+s + ! st arc tgx (t) dt, 
a 

11hose exact solution is x*(s)=l+s2• Let us try to use the Newton-Kantorovic 

method for solving the equation ( 18), with the i nitia 1 approximation x
0 

( t) = 1. 

1\s the kernel 

k{s,t)=Kx(s,t,x0 {t))= ~, 



1 s ueyenera ted, according [3] a resolvent can be find from the integra 1 
equation for a reso1vent,and we get 

3 G(s,t) = S.st. 

Using (16) and the estimation for K(see [4] ), we can find B,n,K,h
0 

1 3 
B =max !IG(s,t)idt = 1U' n= max~0 (s)i= 0,9073, 

s 0 s 

K =max IK 11

2(s,t,u)l= 0,6495, h0=(B+1) 2nK=0,9959>~. 
s, t u 

So, we can not use the Newton-Kantorovic method. Let us apply the iterati
ve procedure (15) for defining the initial approximation. We easily get 
a

0
=0,4979, By solving the i.ntegra 1 equation (15) for n = 0 we get 

2 
~x0 (s)=0,5021 s +0,0195s; x 1 (s)=x 0(s)+~x0(s)= 

= l+0.0195s + 0,5021 s2, 

Likely for x1 (s) ~1e define the constants n1 and B1 :n1=0,4416, s1=0,2222 

(see[5}), Now it is 
2 1 h1 = (B1+1) n1.K=0,4284< 2 • 

41 

So, the condition for using the Nev~on-Kantorovic method with the initial ap
proximation x1(s)=l+O,Ol95,s + 0,502l,s2, is satisfied, For the next itera
tion we get 

2 2 
~x 1 (s) = 0,4979 s -O,Ol35,s; x2(s) = x 1 (s)+~x 1 (s)=s +l+0,0060,s. 

Since the exact solution is x*(s)=l+s2, that is the maximal error 

maxlx*(s)-x2(s)i= ma~0,006.sl= 0,06<10-2 • 
s s 

NOTE 2, In the paper [4] for x
0

(s) =~one obtains h
0
=0,451<0,5 so 

it is possible to use the Newton-Kantorovic method inmediatelly. Here 
x1(s)=s 2+0,0067 s+l. 
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NUMERICAL SOLUTION OF THE FREDHOLM INTEGRAL EQUATION OF 

THE FIRST KIND WITH LOGARITHMIC SINGULARITY IN THE KERNEL 

Tomaz Slivnik, Gabrijel Tomsic 

ABSTRACT: 

The paper describes a numerical method for the solution of 

the Fredholm integral equation of the first kind with loga;; 

rithmic singularity in the kernel. The method is based on 

proper substitution for the singularity and on the use of 

generalized quadrature formulas which allow a faster con-

vegence. 

NUMERICNA RE~ITEV FREDHOLMOVE INTEGRALSKE ENACBE PRVE VRSTE 
Z LOGARITMICNO SINGULARNOSTJO V JEDRU. v dlanku je opisana 

numeridna metoda za resitev Fredholmove integralske enacbe 

z logaritmidno singularnostjo v jedru. V metodi je uporab

ljena posebna substitucija in posplosene kvadraturne formu

le, ki omogodajo hitro konvergenco. 

1. INTRODUCTION 

The solutions of electrostatic problems can be often 

formulated by the Fredholm integral equations of the first 

kind. For instance the charge distribution 0 (x) on the sur-

face of the microstrip transmission line is given in the 

following form 
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( 1) 

where 

1 
1 = f a(y)G(x,y) dy 

-1 
-1<x<1 

G(x,y) = A L 
4n2 + (x~y)2 

Kn-1 ln l-----==----
n=1 4(n-1)2+(~)2 

d 

where A, 1<<1, d are given constants. 

It is well-known that the numerical solution of 

Fredholm integral equations is not numerically stable process, 

namely the condition numbers of matrices become with the or-

der of matrices larger and larger. To obtain stable solutions 

some kind of regularization must be used. Nevertheless in rna-

ny cases of Fredholm equations of the first kind are solved 

and very usable results are obtained by uaing standard numeri

cal processes (with no regularization),[3}. In all such cas

es the kernel has logarithmic singularity. In this paper the 

numerical method for the solution of equation (1) is descri-

bed. For the improvment of the convergence the Richardson ex-

trapolation technique can be used. 

2. STATEMENT OF THE PROBLEH 

We are trying to find 

1 
Q = f a(y) dy 

-1 

where a(y) i's the solution of the equation ( 1). The kernel 

G(x,y) has a logarthmic singularity 

( 2 ) G(x,y) = C lnlx-yJ + K(x,y) 

where K(x,y) is a continous fun ction. It is known that the 



s~lution has singularities at the both ends of the interval 

f1,1] and a(y) can be represented as <[3J) 

a (y) = f(y) 
.; 2--1 - y 

where f(y) is the continous function. 

3. METHOD FOR THE SOLUTION 

For numerical t~eatment of the equation (1) we apply 

the generalized quadrature formulas introduced by K.Atkinson, 

~]. By introducing new variables 

X = COS a 

y = cos fl 

we get 
1T 

( 3) 1 = 6 S(a)[lnlcosa- cos 8 1 + H(a,f3)] da 

fl e: [a, 11] 

45 

where S (a) = a(cosa)sina and H(a,fl) are continous functions. 

The kernel can be rewritten 

lnlcosa- cosel 

a-fl 
= lnl sin-2- I + 

--lL.1L.. 
2 

+ lnla- fll + lnl a+fll + ln/211 - a_ fl \ j 

where the first two terms are conti'nous, the last three terms 

are singular. Continous parts can be approximated by using 

standard quadrature formulas, the singular parts are appro-

ximated by introducing the generalized quadrature formulas 

of the Newton-Cotes type. 

For instance by using the "midpoint rule" we obtain 



where 

and 

TI n 
f'Sta.) lnjcos fl. - cosa.ldex= L a· .S( fl·) 
0 l j=1 l] J 

l h ::: TI fli=(i-2)h, n 

Ct. • = 
l] 

. ~i- flj 
s1n 2 

1 1 + h ln 1 
( 2 n- fl.- fl. ) ( fl. + fl. ) 

l J l J 

fl· +fl. 
sin 1 J 

2 
-fl-~fl--1 + 

i j 

2 

+ 3 h ln h + hi$ 0Ci-j) + $0(1-i-j) + ~ 0 (2n-i-j+1)1 
1! 1 1 1 1 1 $0 Cl) = 
0 

lnll+2 - u!du = (l+2 )lnll+2 1 - (l-2 )lnll-2 !- 1 

Now the well-known method gives a system of linear equations, 

which can be solved by standard methods. Observing that 

1 TI 

Q = J a(y)dy = J S(o.) da 
-1 0 

the quantity Q may be computed. 

4. THE RICHARDSON EXTRAPOLATION 

Suppose that Q can be written in the form 

(4) Q = Q(h) +A hex+ B ha+ 1 + ... 

where coefficients A,B, ••. are independent of h. If we consi-

der only the first term of the series ( 4) ) we get 

Q;:::: Q(h) + A ha 

Q;:::: Q (~) + A(.!!)a 
2 

hence 

Q - Q (l-i) 2ex 
Q(.!!) 

I;;: = r 
Q - 2 

Suppose that (4) is valid, but we do not know the value of ex. 



Nevertheless we can compute a experimently for some cases, 

for whic the exact solution is known. The equation 

1 
J lnlx- y if(y)dy = 1 

-1 

has the exact solution ( ~]) 

and 

f(y) = -
rrln 2 

1 s f(y)dy = 
-1 

= -1'442695 

By the numerical way (midpoint rule) we get the following 

results 

n Q r 

1 -1'56525 4'6 

2 -1'47283 4'01 
4 -1'45021 4'008 

8 -1'44457 4'03 

16 -1'44316 

and we can assume that the convergeMce of the method is 

quadratic. 

The well-known Richa~on~s elimination gives the table 

-1'56525 -1'44202 

-1'47283 -1'44267 

-1'45021 
-1'44269 

-1'44457 
-1'44269 

-1'44316 

and it is evident that the second column converges very fast 

to the solution. 
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We compute extensive tables of Q for the different 

values of constants K and d. When using, for instance._ge

neralized Simpson~s rule, the four point approximation com

pletely agrees with the results which can be find in the li

terature, [2] . 
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ON A CLASS OF COMPLEX POLYNOMIALS HAVING All ZEROS 
IN A HALF DISC 

WALTER GAUTSCHI AND GRADIMIR V. MILOVANOVIC 

1\BSTRACT: 

ve study the location of the zeros of the polynomial pn (z) = rrn (z) -

. i e rr (z), where {rrk} is a system of monic polynomials orthogo-
n- 1 n- 1 

rat with respect to an even weight function on (-a,a), 

:s a real constant. We show that aU zeros of pn Ue 

0 <a < oo, and e n-1 
in the upper ha Zf 

lise lzl <a 1\ Im z > 0, if 0 < 8 < rr (a)/rr 1 (a), and in the lower n-1 n n-
!alf disc I z I <a 1\ Im z < 0, if -rr (a) /rr 1 (a) < e 1 < 0. The uUrasph-n n- n-
rical weight function is considered as an example. 

0 I<LASIKOMPLEKSNIH POLINOMA KOJIIMAJU SVE NULE U POLUI<RUGU.U radu se raz-

matra pr•oblem Zokalizac-ije nuZa polinoma p (z) = rr (z) - ie 1rr (z), n n n- n-1 
gde je {rrk} sistem monianih poZinoma ortogonalnih u odnosu na parnu te-

zinslw funlwiju na (-a, a), 0 <a< oo, a en-l reaZna lwnstanta. Dokazujemo 

da sve nuZe polinoma p Zeze u gornjem poZulwugu I z I< a 1\ Im z > 0 , ako 
n 

je 0 < e 
1 

< rr (a)/rr (a), a u donjem polukrugu lzl <a 1\ Im z < 0, ako 
n- n n-1 

je -rr (a) /rr 
1 

(a) < e_, < 0. Kao primer razmatrana je uUrasferna te-n n- n-l 

Zinska funlwija. 

1.1NTRODUCTION 

In a series of papers, Specht C2J studied the location 

of the zeros of polynomials expressed as linear combinations 

of orthogonal polynomials. He obtained various bounds for the 

modulus of the imaginary part of an arbitrary zero in terms 

of the expansion coefficients and certain quantities depending 

only on the respective orthogonal polynomials. Giroux ClJ 

sharpened some of these results by providing bounds for the 

sum of the moduli of the imaginary parts of all zeros. In the 

prooess of doing so, he also stated as a corollary the follo

wing result. 
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Theorem A. Let 

f (x) 

g(x) 

(x-x
1

) (x-x2 ) ... (x-xn), 

(x-y1) (x-y2) ... (x-yn), 

with x 1 <y 1 <x2 < ••• <yn_ 1 <xn. ~'for any real number c, 

the~ of the polynomial h(x) =f(x) +icg(x) are all in the 

half strip Im z ,;::.o, x 1~ Re z ~ xn, 9E all ~ in the conjugate 

half strip. 

Here we consider special linear combinations of the 

form 

( l. 1) p (z) =rr (z) -ie 1rr .1 (z), 
n n n- n-

where {rrk} is a system of monic polynomials orthogonal with 

respect to an even weight function on (-a,a), 0 < a<oo , and 

en_ 1 is a real constant. We combine Theorem A with Rouche/s 

theorem to show, in this case, that all zeros of pn, under 

appropriate restrictions on en_ 1 , are contained in a half disc 

of radius a. The result is illustrated in the case of Gegen.

bauer polynomials. 

2. LOCATION OF THE ZEROS OF Pnh:) 

Let w(x) be an even weight function on (-a,a) ,O<a <oo, 

Then the monic polynomials orthogonal with respect to w(x) 

satisfy a three-term recurrence relation of the form 

(2. 1) { 

rrk+ 1 (z) = zrrk(z)- i3krrk_ 1 (z), 

rr_ 1 (z)=O, rr
0

(z)=1, 

k=O, 1, ... , 

where Sk > 0. Since rrk(-z) = (-1)krrk(z), k=0,1, ... , the polyno

mial (1.1) can be expanded in the form 

so that 

hence 

p (z)=zn-ie 
1
zn- 1 + 

n n-

n 
l: s

1 
= i 8 

1
, 

k=1 < n-

n 

l: Im~;k = en-1, 
k=1 

.... , 



here s 1 , s 2 , ... ,snare the zeros of the polynomial (1.1). 

By Theorem A and (2.2) all zeros of the polynomial 

,1.1) lie in the half strip 

(2. 3) I m z > 0 , -a < Re z < a if 8 n _
1 

> 0 , 

or 

(2. 3 "') Imz <0, -a<Rez< a if en_ 1 <0, 

strict inequality holding in the imaginary part, since pn(z) 

for en_ 1 -=} 0 cannot have real zeros. Of course, if en_ 1 = 0, 

~11 zeros lie in (-a,a). 

Let D be the disc D = { z: I z I <a} and 3D its boundary. a a a 
qe first prove the following auxiliary result. 

Lemma. For each z E 3D one has 
--- ---~ a ---

(2. 4) 
lrrk(z) I> rrk(a) 

rrk-1 (z) rrk-1(a) 
k = 1,21 • • • • 

Proof. Let rk ( z) = rrk (z) /rrk_ 1 ( z) and z E 3D a. We seek 

lower bounds rk (not depending on z) of lrk(zll for zE3Da' 

z E 3D . 
a 

From the recurrence relation (2.1) there follows 

(2. 5) rk(z)=z-
rk-1 (z) 

k=2,3, ... , 

where r 1 ( z) = z. We can take, therefore, 

(2. 6) k=2,3, ... 

rk-1 

Using the usual notation of continued fraction, we ob

tain from ( 2. 6) 

a -
a- a- a 

It is easily seen that rk = rrk (a) /rrk_ 1 (a), k ~ l. Indeed, using 

( 2 • 1) 1 

51 



2 

r = a -k 

By a similar 

2a -

13 k-1 1Tk-2 (a) 
a- sk-1 

1Tk-1 (a) rk-1 

argument one could show 

1Tk(z) I 
1Tk-1 (z) , 

1Tk (a) 

1Tk-1 (a) 

that 

but this will not be needE:ld in the following. 

D 

Theorem. If the constant en_ 1 satisfies 0 <8n_ 1 < 

<1ln(a)/1Tn_ 1 (a), then all zeros of the ~omial (1.1) lie 

in the ~ half disc 

I z I c a 1\ Im z _, 0 • 

If -Tin (a) /1ln_ 1 (a) < en_ 1 < 0, then all ~ of ( 1.1) are in 

the lower half disc 

I z I < a 1\ Im z < 0 . 

Proof. By (2.4) we have 

11! ( z) 

I 

1Tn(a) 
(2. 7) 

1Tn:1 (z) 
> 

1Tn-1 (a) 

hence, if 1T (a) /TI 1 (a) 
n n- > I en-11 , 

zE:lDa' 

z E:lD . a 

Applying Rouche's theorem to (1.1}, we conclude that all ze

ros of the polynomial pn lie in the open disc Da. Combining 

this with (2.3) or (2.3'), we obtain the assertions of the 

theorem. D 

3. EXAMPLE: GEGENBAUER POLYNOMIALS 

We now consider the ultraspherical weight function 

w(x) = (1-x2 ) A.-1/z (A.>- 1/2) on (-1,1). In this case, a=1, and 

1lk(z) = Jk! c
1
"(x), where c

1
"(x) is the Gegenbauer polyno-

2 <::(A) <:: <:: 
k 

mial and (A.)k Pochhammer's symbol, (A.)k = A.(A+1) ... (Hk-1). 



Since 

2 (Hk-1) 

md 

c~ (1) 

\ 
ck-1 (1) 

2Hk-1 

2 (Hk-1) 

m~k 1 

1here D is the di ff_erentiatio_n operator, our theorem implies 

:he following 
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Corollary. Let denote the monic Gegenbauer poly-

tomial of degree k ~ parameter \. If the constant en_ 1 sa-
2\+n-1 . 

:isfies 0 < en_ 1 < , then all ~ of the polynom1al 
2 (Hn-1) 

)n(z) = 1T (z) -ie 1 11 1 (z) and of its derivatives lie in the n n- n-

~pper half disc I z I <1 1\ Im z >0. If - 2 \+n- 1 < e < 0 I then 
2 ( Hn-1) n- 1 

they ~ all in the lower half disc I zl <1 1\ Im z <0. 

The upper bound (2Hn-1)/(2(A+n-1)) forle 
1

1 becomes 
n-

n/(2n-l) in the case of Legendre polynomials (\=1/2), and 1/2 

in the case of Chebyshev polynom~als (\=0). 
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ON THE OPTIMAL CIRCULAR CENTERED FORM 

Ljiljana D. Petkovid 

.BSTRACT: 

ome including circular appro:1v-imations of the closed set {f( z) : z E Z} 
f is a closed complex function and Z = {a; r} is a disk) in the oen
ered form {f( a) ; R} are considered in this paper. The optimal oente
ed form {f( a) ; Ro}, where Ro = max If( a) - f( z) I ( z E Z), is compared 
0 the centered forms which use 'l'aylor s series. The optimal radius R0 s determined for some standard (library) functions. 

1 OPTI MALNOJ KRU'ZNOJ CENTRALNOJ FORM I. U ovom radu su razmatra
e neke ukljui'Jujude kruzne aproksimacije zatvorenog skupa {f(z): z E Z} 
f je zatvorena kompleksna funkcija i Z = {c; r} je disk) u centraZnoj 
'ormi {f( c); R}. Optimalna centralna forma {f( c) ; Ro}, gde je Ro :::: 

.. ux If( c) - f( z) I ( z E Z) • uporedjena je sa centralnim formama koje ko
riste Taylorov red. Za neke standardne (bibl.iotecl<e) funkoije odredjen 
je optimalni radijus R0 . 

Let Z = {w: lw-zl _:_r} = {z; r} (z EC, r;;:OO) be a disk with the 

center z and the radius r. The set of all disks v1ill be denoted with 

K(C). Let f be a complex valued function of a complex variable, anali

tical on the union of all disks which belong to the set U =K(C), such 

that the set 

f*(Z) = {f(z) :.zEZ} = U {f(z)} 
ZEZ 

is closed for each Z E u1 = U. f*(Z) will be called the closed uni

ted extension of the function f ·over Z. Since the closed region f*(Z) 

is not a disk in general, it is of interest ·for evaluation in circular 

arithmetic to introduce a disk W vlhich includes the closed set f*(Z), 

that is W = f* ( Z). 

The circular region F(Z) such that the inclusion F(Z)= f*(Z) 

holds for each ZEU 1 is the inclusive disl< for the range f*(Z). Cove·· 

ring of the exact range f*(Z) by the inclusive disk will be sometimes 

called including approximation, or, shorter I-approximation. Obvi

ously. !-approximation is better if the quotient area { f*(Z)}/area{F(Z)} 

is closer to 1. 
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In this paper we shall consider inclusive disks of the form F(Z)= 

{ f(c); R} (Z= {c; r}). This form is centered and it will be shortly ca

lled the C-fol'm. 

Among all inclusive disks with the C-form, the best !-approxima

tion is obtained by the disk with the radius 

( 1) R = R0 = max If( z) - f{ c) I • 
Z E Z 

The disk F0(Z) = {f{c) R0} is called the inclusive disk u.1ith the 

optimal C-form. 

Using computer programs, the special attention is dedicated to 

the computation of standard (subroutine library) functions(ez, ln z, 

arc tgz, sin z, cos z, zn, z 1/n). For some of these functions it is 

possible to find the optimal radius R0 according to (1). In a such pro

cedure the following simple assertions, which we give without the proof, 

wi 11 be used. 

LEMMA 1: Let L be a closed region in complex plane. If there 

exists WEL such that lf(r;JI =< lf(wJI for each i;EL then 

max I f ( 1;) I ::: I f ( vJ) I . 
1; E L 

LEMMA 2: r[1]), p. 70). The inequality 

lez -11 ~elzl- 1 

is valid foY' arbitrary z E C. 

LEMMA 3: Let u and v be real functions of a real variable 

t E [a,b], and let f(t) =u(t) + iv(t). Iff is R-integrable 

function, then 
b b 

ljf(t)dtl ~ j1 f(tJ I dt. 

a a 
LEMMA 4: {[4]. P· 370). If the condition ak ?~0 holds for 

<A, then 

for I z I <A. 

Let r be the boundary of the disk Z= {c; r}, c= lcleiY and let 

st = [o • 21!), P = TZI ·Then, an arbitrary point ZEr can be expressed 
by 

z c + r e i 8 = c ( 1 + pe i w ) ( e ) ,wE Sl • 



vie shall now determine the optimal radius R
0 

for some standard 
0 uncti ons. 

z z = e 

Using Lemma 1 and Lemma 2 we get 
i e 

R
0 

=max le 2 -ecl = lecl max lere -11 lecl(er -1). 
ZEf 8E~ 

f(z) = ln z. 

1 i w Let O!J;Z, i.e. p<1 is valid, and et w=pe . Since lwl <1, with 

regard to Lemma 3 it follows 

/ln(1+w) / = lfpeiw dt I= I~~ I< flp 1 ldt 
0 1 + te i w . 0 1 + te i w = 0 1 + te i w 

p p 

f dt (_dt 
= (1+t2 +2tcosw) 112 ~Jr:t= -ln( 1 -p). 

0 0 
Since z = c( 1 +w), on the basis of Lemma 1 we obtain 

R0 =max llnz -lncl =max lln(1+w)l= -ln(1-p). 
ZEf ZEf 

z 
. n 

Let g(w) = (1 +pe 1w) - 1, uJE~. Since 

R0 =max li -cnl = lcln max lg(w)l = lcln max I I (~)(peiw)k\, 
Z Ef WE~ WE~ k=1 

in view of Lemma 4 (taking ak = (~) and ~ = pe iw) we obtain 

n . · n n n 
R0 = lei max lg(w)l =lei g(O) (lcl+r) -lei 

WE~ 

We shall consider only the case OiJ;Z={c;r} (p<1). Let h(w)= 

1-(1+peiw) 1/n, wE~· Using the development in binomial series,wefind 

R
0 

=max lz 1/n -c 11nl = lcl 1/n max lh(w)l 
ZEf WE~ 

= lcl1/n max j\oo /(1~n) 1(-peiw)kl· 
WE~ k=1 

Applying Lemma 4 for ak = I ( 1 ~n) I and c; = -pe iw, we obtain 
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so that 

R
0 

= lcll/n max h(w) = lcll/n h(n)= lcll/n- (lcl-r) 1/n. 
WEll 

Another type of inclusive circular extension with the C-form, 

based on the development of analytical function by Taylor series, was 

considered in [5]: 

Let f be an analytical function, defined on the union of all di

sks that belongtothe set U=K(C), such that f*(Z) = {f(z): ZEZ} is 

a closed region for each Z = {c; r} E u1 = U. Then, for the closed uni

ted extension f*(Z) we have 

+oo 
( 2) {f(c) R = ~ 

T k=1 

The disk FT(Z) is called Taylor's inclusive disk and RT 

Taylor's radius. 

We shall now compare Taylor's form with the optimal C-form. Let 

z=c+reit (tEll) be a point on the boundaryr of the disk Z={c;r} 

and let u*Ef be the point which maximizes lf(z) -f(c)l. Then R0 = 

lf(u*)-f{c)l. Using Taylor series we get 

Ro = If( u*) - f( c) I = I\"' f( k) (c)( u* - c) k / 
k=1 k! 

+oo 

~' ~ 
k=1 

which means F0(z)= FT(Z) for each ZEU 1= K(C), i.e. the !-appro-

ximation by the disk with optimal C-form is better than by Taylor's 

inclusive disk. On the other hand, we use clearly defined procedure 

to evaluate RT' while the evaluation of R0 is more complicated and 

often leads to hard extremal problems. For this reason, it is of in

terest to apply the disk FT(Z) instead of F0{Z), specially in the ca

ses where RT is close to R0. It can be shown that for the above con

sidered standard functions the equality R0 =RT is valid (see [6]). In 

the remaining cases the inequality R0 < RT holds and, consequently, 

F0{Z)c FT{Z) (see Borsken f2l ). 



raylor's centered form (2) uses Taylor's development of an ana

ytical function f around the center c of domain Z = {c; r}. By expand

ng f(z) as Taylor's series around the origin (Maclaurin's series), we 

1bta in 

( 3) 

In the sequel we shall use the following formula for the power of 

a disk Z={c; r} 

(4) zk = {c; r}k = {ck ; ( lcl+r/ -lclk}, 

which can be obtained from the definition for multiplication of two di

sks, introduced by Gargantini and Henrici [3]. 

Natural circular extension of (3) using (4) results in a circu

lar interval 

F (Z) = I _i_~zk = I f 
1 

O) ck; I f {O)((Icl+r/-lclk) 
+oo (k) { +oo (k)( +ool (k) I } 

p k=O k. k=O k. k=1 k! 

( 5) F p ( Z ) = { f (c) ; Rp};;;;;;? { f ( z) ; z E Z} = f* ( Z ) , 

where 

(6) 
+ool {k) I 

R =I f (O)((Icl+r)k-lclk). 
p k=1 k! 

The inclusive disk {5) will be called the power centered form. 

According to the developing procedure it is normally to expect 

that the power centered form is worse !-approximation for the exact 

region f*( Z) than the Taylor's centered form. Thus, ~1e conjecture 

(7) FT(Z) c: Fp(Z). 

The inclusion (7) leads to an equivalent condition in the form of ine

quality RT~Rp, i.e. 

+"'I (k)( I +"'I (k)( I 
( 8) I f I c ) rk ~ I f I 0 ) ( ( I c I + r) k - I c I k ) . 

k=1 k. k=1 k. 

EXAMPLE 1. Let 

n k 
q(z) = I akz (ak E C) 

k=O 

be a polynomial of degree n. On the basis of (2), (5) and (6) we find 

Q ( Z) = { q (c) ; I .· I q ( k) (c) I rk } 
T k=1 k! 
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and 

Op(Z) {q(c) 

The inequality 

~ I q ( k) ( c) I rk < I I ak I ( ( I c I + r) k ~ I c I k) 
k=1 k! = k=1 

has been proved in [7]. which gives QT{Z)<=Qp{Z). 

EXAMPLE 2, Let f(z) = ez and Z = {c ;.r} be arbitrary disk. Then 

FT{Z) = {ec \ec\(er- 1)}, 

Fp{Z) = {ec el c\ (er -1)}. 

Since \eel ~elc\ it follows FT(Z) <=Fp(Z) in the case of exponential 

function. 

The above examples confirm the conjecture (7), It is interesting 
that other considered examples also verify the inclusion (7). But, we 
are not able to prove the inequality (8) in general case {for arbitrary 
f) so that the conjectrure (7) remains as an open problem. 
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TWO METHODS FOR THE CURVE DRAWING IN THE PLANE 

Dobrilo ~. Tosi6, Dejan v. Tosi6 

ABSTRACT: 

Two methods for the drawing of the curve, given by the equ
ation F(x,y) = 0, are presented. The first method is based 
on a differential equation y' = -Fx/FY, which enables the 
the prediction of the next point of a given curve. The po
sition of a predicted point is corrected. The second method 
has a random choice of the point with the same correction 
as in the first method. The corresponding program package 
TPLTS is realised in BASIC. 

DVA METODA ZA CRTANJE KRIVIH U RAVNI. Data su dva metoda za 
crtanje krive date jednacinom F(x,y) = 0. Prvi metod je za
snovan na formiranju diferencijalne jednacine y' = -FxfFy' 
koja omogu6ava predikciju slede6e tacke krive. Polozaj ove 
tacke je korigovan. Drugi metod ima slucajni izbor tacke sa 
istom korekcijom kao o prvom metodu. Odgovaraju6i programs
ki paket TPLTS realizovan je u BASICu. 

1. INTRODUCTION 

The curve tracing and curve drawing belongs to the 
classic exercise. Many papers and books are devoted to the 
qualitative curve representation (by searching of the cha
racteristic points- particularly singular points), to the 
investigation of the behaviour of the curve in the neigh
bourhood those points, the position 'of asymptots, number of 
branches, etc. Thus we can draw a skech of the curve vrhich 
gives some approximation to the truth. 

If the equation of the curve is given in an explicit 
or parametric form, then we have trivial case. The special 
case appears when the equation is presented in implicit 
form, i.e. F(x,y) = 0, where F is an differentiable function. 

In the present paper we expose two methods for the 
curve drawing. This implies that the curve is to be drawn, 
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with the utmost possible degree of accuracy, has to be con

sidered for this purpose at large number of points on the 

curve. 

The first method will be called 11 implicit" and the 

second one 11 random 11
• Obtained results for the implicit me

thod can be applied in solving of the differential equati

ons, v1hich are given in the implicit form. 

2. IMPLICIT METHOD 

The method is based on the following principle. Let 

F(x,y) = 0 be the equation of the curve, where F is diffe

rentiable function. We calculate partial derivatives ~! = 

~F 
= F)x,y) and 'Oy = FY(x,y). Since dF"' 0, we obtain the 

differential equation 

,y) 

Let M
0
(x

0
,y

0
) be given initial point belonging to 

the curve F(x,y) = 0. vie introduce the step h and parameters 

Sx and Sy in the set { -1, l} • Those parameters give the 

code of in:.tial direction. For example, if Sx = 1 and Sy = 1, 

we take Ax=h and D,y=h; ifSx=~l andS =1, then Ax= y 
= -h and D.Y =h. 

First of all we will calculate Fx(x
0 

,y
0

) and Fy\x
0 

,y
0
). 

If \ Fx(x
0

,y
0

)\ ~I Fy(x
0

,y
0

)\ , i.e. I y'\~1, by applying the 

simple Euler method, the prediction of the next point 

M1(x1 ,y1 ) can be obtained, where 

Fx(xo,yo) 

FY(xo,yo) 

If I Fx(x
0

,y
0

)\ > !Fy(x
0

,y
0

)!, i.e. \y'\ > 1, then 

Fv\.xo,yo) 

Fx\.xo,yo) 

'J!he position of the predicted Doint l'\ can be corre

cted l'Y the Newton-Raphson method. If 



~e correct only x1 by the formula 

F(xl,yl) 
xl * "' xl-

Fx(xl,yl) 

In the another case, when I Fx(xl'yl) I~ l F/x1 ,y1 ) \, 

the ordinate y1 is to be corrected by 

F(xl ,yl) 
yl-

FY(xl,yl) 

There is also the second method for correction. Let 
us observe the surface z = F(x,y) and the tangent-plane at 
the point (x1 ,y1 ,F(x1 ,y1 )). The orthogonal projection of 

the point M1 (x1 ,y1 ) to the straight line, which is the in

tersection of tangent-plane with xy-plane, has coordinates 

After the process of a correction we can calculate 
new coefficients Sx and sy. Namely, if sgn (x1 - x

0
) > 0 , 

then Sx = 1, and if sgn (x1 - x
0

) ~ 0, .we have Sx = -1. The pa

rameter Sy can be obtained by the analogous procedure. 

Ne\v point M2(x2 ,y2) we will obtain by the same me
thod, etc. 

The application of above described implicit method 
can be iru1ibited in the vicinity of the sinp,ular points, 
because partial derivatives Fx and Fy are in the nearest of 
zero. Besides, some branch of the curve can be lost, parti
cularly in the case of complex curves. Those difficulties 
can be avoided by the fdllowing method. 
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3, RANDOM METHOD 

The application of random method is oriented to the 
curve drawing in a given domain in the xy-plane. A domain 
is usually chosen to be the rectangle R, bounded by lines 
x =a, x = b, y = c, y =d. The equation of the curve is again 
F(x,y) = o, where F is differentiable function. 

First ao all, we choose coordinates of the point be
longing to the rectangle R,by the random generator with the 
uniform distribution. AfterwRrds, ~pplying the above descri
bed methods, we try to correct predicted point, obtained in 
such manner. If corrected point does not belong to the cur
ve (\'lith given degree of accuracy), we choose new point, 
etc. 

The random method is completely oriented for the use 
on computers. It is very efficient for the drawing of curves 
possessing singular points and several branches. The random 
method can be succesfully coupled with the implicit method, 
where parameters Sx and Sy are also at random choosen, 

4. PROGRAJ\1 REALIZATION 

Both methods are realized by the program TPLTS 
\Tosic PLoT Software) in the BASIC. The concept of the pro
gram is realised to be interactive. The modul UNICS (UNI
versal Coordinate System) for the drawing of the frame, 
coordinate net, axis, etc., is particularly developed. 

The input activity includes the forming of labels 
for F, Fx, FY' the enter of number of curve points, maximum 

number of corrections of one point, the correction code 
(a choice of the method for correction), the code of the 
method for dravling (random, implicit or coupled), the tole
rance of the function value (usually l0-6 ) which is a cri
terion for the break of the correction, the step h for im
plicit method, the code of a initial direction (S and S ), 

X y 
coordinates of initial point. After the execution of the 
program there is a possibility for the restart of some 
parts of the program, in the aim to obtain new points. 



As an illustration of the implicit and random method, 
wo curves are plotted in figures. Those examples are taken 
·rom the extraordinary book: Persival Frost: An element:C\ry 

treatise of curve tracing. Fourth edition, I,ondon 1926 .. 

jVJacmillan and Co. 

1° x5 ~ x3 y ~ x y 2 + y3 = 0 , 

Random Imp lie it 

Random Implicit 

GG 
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OPERATING WITH A SPARSE NORMAL EQUATIONS MATRIX 

Brankica Cigrovski, Miljenko Lapaine, Svetozar Petrovic 

BSTRACT: 
n naturaZ and appZied sciences, espeaiaZZy in geodesy, sym
e~ria normaZ equations matrices Q=AtA containing reZativeZy 
ew nonzero eZements occur quite often. Then, one frequently 
earranges the matrix Q (interchanging aoZumns and rows simuZ
aneousZy) to bring it to a form more convenient for further 
reatment. The authors of the present paper have come to see 
hat in such oases it wouZd make sense to rearrange first the 
riginaZ matrix A, and onZy then to form Q=AtA. So they have 

elaborated one such procedure and tested it. 

OPERIRANJE S MATRICOM NORMALNIH JEDNADZBI KOJA SADRZI RELA
TIVNO MALO ELEMENATA RAZLICITIH OD NULE, U prirodnim i teh
nickim naukama, a posebno u geodeziji neri4etko se javZjaju 
simetriane matriae normaZnih jednadzbi Q=A A koje sadrze reZa
tivno maZo eZemenata razZicitih od nuZe. Tada se cesto matrioa 
Q preuredjuje (medjusobnim zamjenama stupaaa i istovremeno 
redaka) da bi biZa pogodnija za daZjnju obradu. U ovom radu 
se uocava da bi u takvim sZucajevima imaZo smisZa najprije 
preurediti poZaznu matriau A, pa tek onda formirati Q=AtA. 
Autori su razradiZi jedan takav postupak i testiraZi ga. 

In [ 2] it was necessary to es.timate the accuracy of the 2nd order 
triangulation net which consisted of 88 trigonometric points intercon
nected by 666 observed directions. In fact, it was to evaluate the net 
as a whole, as well as certain parts of it. 

On the basis of r.m.s. errors from station adjustment one can 
obtain only inner accuracy, i.e. the precision of observations. The outer 
accuracy can be determined only from true errors, the so called misclo
sures f of triangles. Since in theconsidered net directions were observed 
and not angles, misclosures were mutually dependent quantities, therefore 
one should calculate the r.m.s. error of an observed direction using the 
formula 
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( 1 ) 

(e.g. [7] p. 132, [ 1] p. 257, [ 11] p. 3). The symmetric nxn-matrix Q=AtA 
is the so-called correlation matrix (the normal equations matrix), the 
mxn-matrix A being a condition equations matrix, and f is a nx1-matrix 
of misclosures. The number of triangles is n and that of directions m, 
In our examples n varied from 19 to 180 (see Table 1), m being at most 
666. 

In all more precise geodetic operations (e.g, 1st and 2nd order 
triangulation) it is required to give an accuracy estimate prior to adjust
ment. Therefore, it had been common in geodetic practices to determine 
the r.m.s, error of an observed direction, using, instead of the strict 
formula (1), the approximate, much simpler Ferrero's formula (e.g. [7] 
p.132, [ 1] p.257, [ 11] p.11) where the computation had been done on the 
basis of misclosures f alone, without matrix Q. 

Of course, to solve the proposed problem using the formula (1), 
one doesn't really have to compute the matrix Q- 1 • It is possible to cal
culate ftQ- 1 f at once, by transforming into triangular form the matrix, 
which is obtained from Q by adding ft as the last row, f as the last 
column, and a zero at the (n+1,n+1)-position. As a result of reduction, the 
value of ftQ- 1

f appears at the position (n+1,n+1). The reduction itself can 
be carried out by some of the known methods. Our choice was the Cholesky 
method, adapted for the later described storage scheme for the elements of 

The decision was made to solve the problem by using a small desk
top computer HP 9845A, the only computer existing at the Geodetic faculty 
in Zagreb, Namely, the matrix A has been composed by a human being, not 
by some machine. Thus it was to assume (which vias confirmed later) that 
it would be necessary to correct data repeatedly, of course, using the 
computer (together with the knowledge of the matrix A special properties) 
also for the diagnosis of errors. Hence, it seemed more rational (and 
more interesting) to deal with the problem of handling a greater quantity 
of data by means of a little computer, which was at hand at every moment, 
than with frequent visits to some mightier computing system situated 
in some other institution. Besides, one can imagine that in some future 
investigations even bigger matrices may appear and the appropriate big 
computer need not be always at hand, even need not exist at all, Hence, 
we believe generally that it makes sense to try to exploit every particu
lar compute~ as efficiently as possible. 



Operating with the original matrix A was made easier by its very 
;pecial form. Its dimension was up to 666x180, but each column contained 
)nlY 6 nonzero elements, each of them being either +1 or -1. 

-2 -10 135 -6 -26 . 0 • ~ 0 " • 0 0 

4 13 162 8 28 0." ....... 0 

9 91 -148 128 -172 o o oe• "" o o 

-13 -97 -165 29 174 .... 0" 0 0 0" 

107 -107 -662 -170 -190 • 000" ..... 0 

-118 110 666 172 193 ........... 0 .. 

Fig. Storing the matrix A 
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Thus it was possible to accomodate that matrix into an array not 
greater than 6x180. Fig. 1 presentsa part of that array for the case n=180. 
E.g. from the third column of that printout one can read that the third 
column of matrix A contains: 

+1 in 135th, 162th and 666th rows, 

-1 in 148th, 165th and 662th rows. 
0 in all remaining rows. 

The computation of individual elements of the matrix Q=AtA from 
the elements of the mentioned array presents no considerable problem. 
The problem is how to store them (suitably for further treatment), be-

cause the structure of Q is much more irregular than the structure of A. 
The number of nonzero elements is not constant but varies from column to 
column. Also, it cannot be predicted in advance. 

~Je tried out the we 11-known co 1 umn by co 1 umn storage scheme for 
symmetric matrices - only from the first nonzero element in the column 
to the diagonal (see [ 6], as well ·as Fig.2). When doing so, the profile 

Fig.2 Profile of matrix Q 
(hatched) 

of the· matrix (the quantity of ele
ments to be stored, and to be operat
ed on subsequently) reduces essential
ly, but still insufficiently for our 
computer. 

The known methods for acting in 
such cases, e.g. column interchanges 
(with simultaneous interchanges of cor
responding rows) for the symmetric rna-
trix Q in order to reduce the profile 



;here are a lot of papers dealing with that, let us mention at least [ 3], 
[~ ,[~ ,[8] ,[9] ,[ 10]) were out of question. Namely, one would have to use 
a considerable part of central memory to accomodate the program. Thus, 
there would be a lot of I/0 operations in the course of rearranging the 
matrix Q (which was too large for the central memory). The computer in 
question uses a tape cartridge as mass storage medium, hence the procedure 
would progress rather slowly. 

Having all that in mind, we concluded that it would be more favorable 
first to rearrange the matrix A appropriately, and only then to form Q=AtA. 
The algorithm should be as simple as possible and the computer program short, 
so that almost everything could happen inside the central unit. 

As normal equations (with the matrix of the form Q=AtA) appear fre
quently in technology and in applied sciences, frequently exactly such 
whose matrix contains a lot of zeroes (e.g. in geodesy it is the consequence 
of the properties of geodetic nets, compare e.g. [ 8] ) , we consider that 
the approach proposed in the preceeding paragraph makes much sense. Regard
ing the realisation of that approach, one could probably also find other 
solutions, perhaps more elegant or better then ours, which is in its turn 
very simple and turne? out well on examples. 

The idea was to rearrange the matrix Q to look as "diagonal" as 
possible. Namely, as easily seen from Fig.3c. and 3d., the elements qli of 
the matrix Q i-th column are zero for l<j and for l>k, i.e. with A becom
ing "more di agona 1", Q a 1 so becomes such and its profi 1 e reduces. 

i 

II: 
a b c d 

Fig.3 a. the original matrix A 
b. A after completition of the first step (row interchanges) 
c. A after second step (column interchanges) 
d. i-th column of the matrix Q formed from rearranged A (c..) 

(Blackened areas contain nonzero elements) 

The "pushing" of the matrix A nonzero elements towards diagonal was 
realized in two steps. The first step represents the "compression" of each 
individual column. It started by putting six rows which contain nonzeros 
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in the first column to first six rows. Then, the columns which have non
zero element in the first row were found one by one, and the rows contain

ing remaining nonzeros of the column in question arranged in sequence 
following the rows already arranged up to then (the row which once exchang
ed place with some preceeding row remains there till the end of procedure, 
a once.processed column is considered never again). After that followed 

the search for not yet considered columns having nonzeros in the second 
column etc. The procedure was completed when there remained no untreated 
column. In this way the matrix A was transformed from the form in Fig.3a. 

to the one in Fig.3b. 
The second step consisted in column interchanges in order to change 

the situation in Fig.3b. to the one in Fig.3c. It was carried out by ar
ranging the columns in a seguence using as a criterion the last nonzero 
element in each row (the first nonzero would do equally well, one could 
also use both of them): columns having nonzeros in the last row became 

last columns and so on. 

number of upper trian. 
e 1 ements of the share diagonals ratio 

upper triangle of with nonzer. profile of 
n total nonzero non zeros orig. rearr. ori g. rearr. profiles 

19 190 56 29% 18 9 123 110 1.12 
152 1162~ 561 4.8% 145 24 5170 2200 2.35 
162 13203 755 5.7% 160 35 6269 2725 2.30 
173 15051 773 5.1% 171 34 6863 2745 2.50 
180 16290 6~1 3.9% 173 24 6852 2324 2.95 

Table 1 

From the matrix A rearranged in this manner, the matrix Q was form
ed having a smaller profile than when formed from the original matrix A. 
As easily seen from the Table 1, ·the considered examples showed a signifi

cant decrease not only of the profile but ~lso of the bandwidth. Hence, it 
was also possible to carry out the reduction to triangle in another way 
- to use some algorithm for banded matrices. 

For the time being one can hold that the efficiency of the proce
dure increases when the format of the matrix Q and the share of zeros in 
it increase. 

Finally, the question emerges: Is rearranging the mr>tri x A before 
forming Q worth the trouble only in such very special cases when matrix A 
has the structure described above? We are not of that opinion. Namely, 
if A had approximately the .same share of nonzero elements as in our examp
les, but the elements were disposed in an irregular pattern and assuming 



.. _.e heterogenous values, A would fit into an array of something more 

than b1ofold magnitude, which would be still bearable. In that case e.g. 
for n=180, in place of an 6x180-array, one would need approximately 
13x180 of storage space. Table 1 shows that it would be still less even 
than the profile of the matrix Q formed from the rearranged A. 
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APPROXIMATION OF 2n - PERIODIC FUNCTIONS BY FUCTIONS OF SHORTER PERIOD 

Slobodan D, Miloradovic 

ABSTRACT: 

In this paper we give the value of the exact approximation, for a fix~d. 
2n ~ periodic function by functions of period 2n/k vJhere k is a natural 
number larger than 1. We determine also the exact approximation of a fixed 
2n ~ periodic fuction by fwiktions of period 2nm/k, where m al?-d, k are two 
nutuaZZy prime integers, Them the equality of both approximations is pro
~ed. An example which illustrates these results is given at the end. 

1PROKSIMACIJE 2n - PERIODICNIH FUNKCIJA FUNKCIJAMA KRAGE PERIODE. U r>adu 
3e daje vrednost taone aproksimaaije, fiksirane, 2n - periodiGne funkaije 
runkaijama perioda 2n/k gde je k prirodan broj vedi od 1. Takodje se utvr
ijuje tacna aproksimac~ja, fiksirane, 2n - periodio7(e funkaije fun7wijama 
perioda .2nm/k, gde su m i k prirodni, uzajamno prosti, brojevi. Zatim se 
dokazuje jednakost jedne i druge aproksimacije. Na Jo:.aju se daje primer 
koji lustruje naV@dene rezultate. 

~et cra,b], as usaul be the space of real continuous functions f 
defined on the ·interval [a, b] with norm 

II fllqa,bJ = x 6[:~b] lf{x) I, 

and let C denote the space of periodic, real and continuous functions f 
defined on the real line (-oo, +oo), whose period is 2n multiplied by a ra
tional number, with norm 

llfllc = maxlf(x) I, 
X 

The set of all periods of a functions f is denoted by ~f· For exam
ple, iff is a 2n - periodic functlon, we shall write 2n6~f' 

In this paper weshall find the value of the exact approximation of 
a fixed 2n - period ica 1 function f, by a functions 1/J of period 2nm/ k, v:he
re m and k are two mutually prime integers, that is, we shall find the 
value of 
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Let us mention that, if two functions have different periods, in 

order to find their distance in the metric C it is enough to find their 

distance on the smallest inteval in which the periods of the functions 

are contained a whole number of times, Thus for example, if 2nenf and 

2nm/k € n~ then we have 

!If~ 1/JIIc = !If- 1/JIIc'[o,2nm]" 

Lemma 1. Let fG C, 2nenf and 

fk(x) = max f(x + 2~s), fk(x)· =min f(x + 2~s), k, seN, k<>2. 
O.;;s..;k-1 O<s<k-1 

- 2n 
Then f k and fk are continuous and Ten f 1< and 2n/ k€Q fk 

Proof. The fact that f is continuous is equivalent to the fact 

that for every c>O there is an 6{e:) > 0 such that 

(1) !x'-x"l < 6(c)=\f(x')- f(x")! < e: 

According to equality 

(2) \(x' + 
2
ks)- (x" + 2~5 )! = !x'- x"l 

from (1) and (2) it fo1lws that !x''- x"l < 6(e:) implies 

\f(x' + 2ks) - f(x" + 2~5 ) I< e:, (O<>s<k-1), 

that is 
-e: + f(x" + 2~s) < f(x' + 2ks) < f(x" + 2~s) + c (0.-s<k-1), 

hence 
-c + max f(x" + ~)< max f(x' + 2ks)< max f(x" + 2ks)+c, 

Q.;s.;k-1 0" s" k-1 O.;s,k-1 

that is 
jfk(x') - fk(x") I= I max f(x' + 2ks)- max f(x" + 2ks) l<c, 

O<s.:k-1 O"s"k-1 

which means that fk is continuous. Accordingly it is proved in the same way 

that fk is continuous, Since 2n£nf' it follows that 

fk(x + 2;) = max f(x + 2; + Jks) = max f(x + 2n~s+ 1 ))= max f(x+ 2k5
] 

O<s<k-1 o,s..;k-1 O<s<k-1 

that is 2n/kenr. Similarly, 2n/ken 
k fk T _ f 

Theorem 2, Iff € C, 2n ,;nf' dk = k 2 -k, then 

(3) i n f II f - 1/J II c [o 2 -J = i I d k II c [o 2 I J 
1/J 2n/ €Q ' TI ' TI k • 

' k 1/J 



Proof. According to lemma 1 the functions 

fk~·fk fk+.fk 
dk = 2 and lJ! k = 2 

ore from C and 2TI/kEr.ldk' 2u/kEr.llJ!k' Since for x € [0,2TI] 

then 

and 

f(x) - lJ!k(x) ~ fk(x) - lJ!k(x) = dk(x), 

, f(x) "'lJ!k(x) ".fk(x) - lJ!k(x) = -dk(x), 

(4) !.If- lJ!kllq0 , 2 'ITr~lldkllc[o,2'IT/k]' 

Since dk is continuous on the closed interval, then there is x0 € [0, 
2;J 

such that dk(x 0 ) = jjdkjj, For any function ;JiEC, 2TI/k€r.llJ!, we have 

that is 

(5) ilf-lJ!ilcjo, 2 'ITI~IIdkll 2
'IT 

c[o,T] 

From (4) and (5) we get (3). Theorem 2, in the form of a lemma was proved 

and used in [1J. for determining the exact upper limit of Fourier coeffi

cients on class H[8] 
1 

in the space L of integrable functions. 

(6) 

Corollary 3. If fE C, 2TI€ rolf' M =max f(x), m =min f(x), then 
M X X 

inf jjf-;JJjj.; ;m. 
2'IT 

lJ!,T€r.!lJ! 

We have equality in (6) for such function f for which there is a 

point x0 in which M = fk(x
0

) .and m = .fk(x
0

). 
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Corollar·y 4, If f E C, 2TI e rip then 

lim ~~ f \If- lj!llqo,z1T] = M2m • 
k-j><)O ljJ,kErlljJ 

The sequence ( in f \If- ~llc[o 2 ])"" is in general not monoto-
2TI ' 1T k=2 

ljJ,Ter~ljJ 

ne, which is evident from an example given at the end of this paper. It 

would be of interest to describe the class of functions fE C, 2TIE r~f' for 

which the upper set would be monotone. 

If a fixed function f£ e, 21re rip is approximated with functions 

2Tim/kE r~ljJ, where m and k are mutually prime number~,then by putting 

max f(x + Z1rms), fk(x) = min f(x + Z1rms), 
O<!ls.;;k-1 k O~s~k-1 k 

fk - fk 
dk = 2 

and using lemma 1, we prove, in a similar way like theorem 2. 

Theorem 5. If fE C, 2TIE r~f' them 

(7) 
~~mf \If- lj!llqo,21Tm] = \\dkl\ [ 21Tm1 

lj!, T6rlljJ e: o, -k- . 

Since from 
2
k6r11/J it follows that 2kmer~ljJ then 

2TI 21rm H: Ter~1/J}c:{1/J: -1<-E.r~ljJ}, 

and for f s C, 2TI e rip 

2
;n1T f \If- lj!llqo,z1T] ~ in f \If- ljJII 

2TimE.rl · C[0,2Tim] 
ljJ'k 6 rlljJ ljJ, k lj! 

(8) 

It could be expected that strict that strict inequality is not 

excluded in (8). We sholl prove, howerer, that both sides of inequality 

(8} are always equal we shall need. 

Lemma 6, Let m and k be mutually prime numbers. By dividing all 
terms of sequence 

(9} m, 2m, .•. , (k-t)m 

by k, we obtain the sequence of remainders 



rhen (10) is a permutation of the sequence 

(11) 1, 2, '"' k-1, 

Proof. It is clear that by dividing by k any term from set (9) we 
get a remainder which is smaller than k, as well as that the number of 
terms of (10) is k-1. Accordingly, to prove that the sequence (10) is a 
permutation of the sequence (11) is enough to prove that there are not 
equal terms between the terms of (10}. Let us suppose the opposite,that 
is that among terms of set (10) there are two terms lm and nm, l<n~k-1, 

which when divided by k give the same remainder: 

1m= kp + rn' 
nm =kg+ rn, p, geNu {0}, rn<k, rne N, 

By substracting the first equality from the second equality we get 
(n-l)m = k(g-p). 

Hence, considering the fact that numbers m and k are mutually it follows 
that the number n-1 is divisible by k, and that does not agree with ine
quality 0 <n -l<k. 

Theorem 7. Iff£ C, 2rrE stf' and m and k are mutually prime numbers, 
then it follws that 

Proof. Due to lemma 6 m.s 
a permutation of sequence (11), 

in f II f - 1J! II C [o' 2rrm] . 
2rrm 

1}!,-k- 6 S"ll}J 

( ) k-1 . = gs·k+r
5

, gse Nu{O}, where rs s= 1 1s 
and having in view that 2rr E stf we get 
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fk(x) max f(x + 2'kms) = 
O,:s,:k-1 

2rrr s 2 s 
max f(x + 2rrgs + ~) = max f(x ++)= 

O~s~k-1 O,:s~k-1 

=fk(x}. 

Also f (x) =.fk(x) and 2;6&1-f, 2;£stf. According to that vie have 
k k . k 

2rr/k6 std* and for every xe[O, 2;] dk(x) = dk(x), that is 
k 

( 13) II dk II [ 2rr, II d"k II [ 2rrmJ · 
C O,kj C 0, k-

From (3), (7) and (13) we get (12}. 

If m>k then we get 2rrm 1 k > L rr, so that Theorem 5 gives a result about 
approximation of a function fE C, 2rr6 stf' by functions whose period is lar
ger than 2rr, also. But theorem 7 confirms that approximation of 2rr perio
dic function whose periods are larger than 2rr are equal with approximations 



of functions whose periods are smaller than 2n which is in accord with 
the title of thos paper. 

( 14) 

Example 8, Let f(x) = cosx. Then we have 

{ 

1, n = 2s, s € N 

II t - 1/J II r. J = 
CL0, 2n cos;k,k=2s+1,seN. 

Proof. Let k = 2s, S€ N. Since f(x) = cosx it follows that 

COSX, X€ [0, Ts J 

(X + 2s-1 ) [ 1r · n] cos 5 n , X 6 -zs• s ' 

= ( cos (X + n ) , X £ [ 0 , 2n5 
] 

i ( s-1 ) [ n n] COS X +-
5
- n , X E 7$' S ' 

_ \ cosx, x £ [ 0, !s ] , 
dk (x) 

cos (x- ~),X£ [-fs, ~], 

and I ldkl I = 1. According to theorem 2 we get the first part of 
C[O, ~] 

equality (14), If k = 2s+1.Thenwe get 

{ 
cosx, X£ [0, Z;+,J 

f (x) = hs [ n 2 n J 
k cos (x + 2s+1)' x 6 2s+1 ' 2s+1 

( 2ns ) [ 2n ] fk(x) = cos x + 2s+1 ' x € 0, 2s+1 ' 

. ( ns ) n 
= J Sln x + 2s+1 cos 2(2s+1) , 

l · ( ~) n Sln x + 2s+1 cos 2{2s+1) 

X € [0, 2;+1)' 

and I ldkl \ =cos 2(2;+1) , which proves the other part of equa-
C[O, 2~: 1 ] 

1 i ty ( 14). 

R e f e r e n c e s 

[1] / r MHnDPAAOBHY C, 0 Hos¢¢H~HBHTax ¢ypbe Hnacca W H[o
0

] 1 . 

-Publications de 1 'institut mathematique, Beograd, tome 
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ON THE STRONG SUMMABILITY (C,~) OF TRANSFORMATIONS 
OF SIMPLE AND MULTIPLE TRIGONOMETRIC FOURIER SERIES 

Vladimir N. Savio 

'I.BSTRACT: 

Vhile working on the above subject I found inequalities followed 
w a number of result's on the strong summability(C,rf~) of 
;ransformations of simple and multiple trigonometric Fourier 
Jeries. 

) JAKOJ SUMABILNOSTI (Cj~) TRANSFORMACIJA PROSTIH I VISE
STRUKIH TRIGONOMETRIJSKIH FURIJEOVIH REDOVA.U radu su dokazane 
nejednakosti iz kojih sleduje niz rezultata o jakojsumarnlnosti 
CC,~)transformacija prostih i visestrukih trigonometrijskih 
Furijeovih redova. 

CC~£)transformation of the series(l),T=(O~~regular matrix 
and tJ>O. If oo 

1vm I a/~~.,; I ~~e-x_,,~)- ~c~~) I~"' o 
"'t --+ 00 K'"' () 

we say that series (1) (H,p,T,o(,) (or strong1is summabil in point X 
towards ~('..C) .In ad2tion to the abovestated,i~ ~£<i'.&:Jr? X] and 

l;;m. /} L ctn, i< J Co d..(~,~)- }(/x) 1· y.> \\ = 0 
1'L-'>-00 K=O ~ I<: I c 

we say that series (l)(H,p,T,~)(or strong) is summabil uniformly 
at [-:Jt7X] towards the f function. 
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Theorem ~~Let !~il:(-:~·1Jc.]th:Jn for each r~ .. ~,~~-'1 1 ~.._~C 
~.Jl-6~( JC, ~)~ !(·)t,;! rJ ~~-eli cy..,·v~,[ K_hL;~ c~D r i .. ~. 

where J..,-.J is any non-negative ,not-increasing numbers ,E~( ~ 1 
the best approximation of the f function to the trigonometric 
polYJ:!omials of the degree ~\J'in distanceof the space If .[~It ~ii..], 
and cl\ (f',J.) a positive constant aepending only on r a.nli,.;,' 

Proof.According to Theorem l there follows 



JJenni:tiPJ]-_Z. Let F..,~ J, 0 any seqUf;mce and CF. collection of 
the functJ..on !e<tE-Jr,:X:] for wh1ch E-n.(~J~F.-vc." 
Theorem 3· Let ~ E CF and T=( CL,~,~) a non-negative regular 
-matrix the elements of which satisfy the condition 

an/<+1 ~ a_n;sK (V~ = 0:1 1~.:2. 7 .... ) 
Then, there exists the sequence jO(rtt.)t+ 00 such that 

J.;-, Jl { f' \ "-· Q ) Q .I rc-n.) l~ 1\ -n~~ . ~ ~ a-n.J ~~ ('.t.,-;~ - .r(r:x:,) ) ~"'"·' ~~ = o . 
Theorem is proved as in (2). C 

Theorem 4.If !,E.CF and cL~ is any sequence of non-negative, 
not increasing num·bers, then for each p>O, V:~·1 and o(>O the fol
lowing inequality is correct: 

(.q) ~- F.t~-1) ~ ;x'-~ }jZJ 6:(;~:,-l)- ~c~){r,x:-v!{ ~ 
:V:2.K:-2. ~eCF ~=.2.K-..2. C 

. . oo r 
.~ C1 cr,oG) 7= F~ ~~ 

II :. ¥::-1 
Pro~f.The right hand inequality results from Theorem 2. 

co 

~o (-:x:) -L ( Fn.-1 F -n.) c OJ n x . 
")t.=.1 

Let 

Then 
~.o(0)-6:(o,~o)= F~, ~0 t Ls: 

DC 

)\ L \6~('Jt,-~o)-·~0 ('~.)~fq£~ !\ >LF% a(.~ 
~::2..1:.~ '2. ( +=-.J..K-2. 

by which Theorem 4 is proved. -

and 
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From inequality (4),it results that the approximation 
rate to the strong means, ((\tL ) (c( >0 )transformations of 
trigonometric Fourier series of the function!((.(for the whole 
CF collection) cannot be impr,oved. I= 

Similarl~,we testify and prove the theorems relating 
to ((,.{, ) (,/,_">0) transformations of multiple trigonometric 
Fourier series. 
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~ ESTIMATION FOR REMAINDER OF ANALYTICAL FUNCTION IN 
TAYLOR'S SERIES 

•etar M. Vasic, Igor z. Milovanovic and Josip E. Pecaric 

.BSTRACT: 
n this paper some estimations of difference modul of analy
ical functions 'l.nd referred Taylor's polynomials are given. 
he obtained results are illustrated on a certain concrete 
f cases, i.e. on exponential, sinhyperbolic and cosinhyper
olic function. 

OCENI OSTATKA ANALITICKE FUNKCIJE U TAYLOROVOM RAZVOJU. U 
ovom radu date su neke ocene modula razlika analitickih fun
kcija i odgovarajucih Taylorovih polinoma. Dobijene ocene su 
ilustrovane na konkretnim slucajevima, tj. na eksponencijal
noj, sinushiperbolicnoj i cosinushiperbolicnoj funkciji. 

We shall prove first a more general result for analy
tical functions: 

THEOREM l. Let z~+ f(z) be an analytical function in the 
circle izl< R. Let functions z~+ f(k)(z), ke=N0 ~ map real axis 
in real axis. If a natural number r exist, l < r ~ n, so that 
0~ f(n+k)(O) ~ ir+k)(O) - -

- - , ke. N, the inequality 

holds. 
Proof. Assume that all conditions given in theorem 1 

are fullfiled. ·Then 

it(z)- ~ f(k\o2 zkl'" I ~oo f(k)(O) :4kl~ ~oof(k\?lizlk 
k=O kl k=n+l kl k=n+l 
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< 

< 

lzln-r 
__ ~...;;;. "-· -- ( f( lzl)-

(n+l) ... (r+2) 
), 

wherefrom the inequality (l) is obtained. 

In the similar way the following theorem can be proved. 

THEOREM 2. Let z t-+f(z) and z..,. g(z) be analytical fun

ctions in the circle lzl < R. Let functions z H-f(k)(z) and 

ZH- g(k\z), k eN , map real axis in real axis. If a natural 
number r exist, ~ _:_ r _:_ n, so that 0 _:_ f(n+k) (0) ,;;, g(r+k) (0), 

k E. N, then the inequality 

I z lr+l n f(k)(O) k 1 ~ 1n+l( r (k)(O) 
(2) · · I f(z)- ~ z I_:_~ g(lzl)- ~ g lz 

(r+l) I k=O kl (n+l) 1 k=O kl 

holds. 

On the basis of inequalities (1) and (2) we shall gi

ve some approximations for concrete analytical functions. 

If we put f(z) = ez, then f(k)(O) = 1, kEN
0

, on the 

basis of the inequality (l) we obtain 

(3) 
1 .. 1 r+l z 
~le
(r+l)! 

n k 
~ _z_l < 

k=O k! 

lzl n+l I I ( e z-
(n+l)! 

~ lzlk 
/., ) . 

k=O k! 

The inequality (3) (see [~ ) is a generalization of 

Garnir's inequality (see for example [ 2,p.323 J ) 

z z zn I z ln+l I zl 
I e- (1+ 'rr + ... + n!)l < (n+l)! e • 



and 

If we put that 

7.: 2n-l z..... z 
T2n-l(z) = z + ?T + ••• + ~(~2n--~r~)~! 

2n-2 z 
• • • + ~( ~2n--""'2"') I ' 

then for .f(z) shz and .f(z) = ch z we obtain inequali-

ties 

and 

f ( )I (2n-2m~ 1 ch z - T2n_2 z 2_ (2ri I 

for m=l, ••• ,n, respectively. 

In the same way on the basis of tne inequality (2) 

we obtain inequalities 

I , < \1 (2n-2m~t 1 _,2m+lc II . <I'') sh z - 1'2n-l z Jl ~ (2ri+l ! L.J ch z- ·r2n-2m-2 zv 

and 

rch z- T
2

n_
2
(z)l < ( 2n-2m+l·)!lz.2m-l(shlzi-T (I z/)) (2n)! 1- 2n-2m-l 

form= O,l, ••• ,n • 
On the basis of P.R.Beesack's remark (see l2] ) we 

shall prove the .following result: 
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THIDREM 3. If z is the complex number, iz I~/ ( 2n+2) ( 2n+ 3} 

then the inequality 

< (2n+2)(2n+3) ___ __:.l;;;;.z:...f 2_n_+_1__,,.. 

(2n+l)! (2n+2)(2n+3)-l zl 2 

holds. 



Proof. As 

I zl 2n+l lzl 2 
Ish z- T2n-l (z)l ~ (2n+l)l (l + (2n+2)(2n+3) + • • • ) 

< 
lzl 2n+l I z1 2 lzl 4 
. . (l + . . + 2 2 + ••• ) 

(2n+l) I (2n+2)(2n+3) (2n+2) (2n+3) 

I zl 2n+l __ (;h2;;;::n:.:+..:;;2~)~( ;::;;2n:::.+;..,3~).__...,.. 
. . 2 

(2n+l) I (2n+2)(2n+3) - I z1 

the wanted inequality is obtained~ 
In the similar way the .follo1t!ing result is obtained: 

THIDREM 4. If z is the complex number, lzl< /(2n+l)(2n+2) 
then the inequality 

holds. 
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.. -.nerical Methods and 

Approximation Theory 

Nis, September 26-28, 1984 

ON A ME'.THOD OF NUME'.RICAL DIFFERE'.NTATION 

Bogdan M. Damnjanovi6 

ABSTRACT: 

A method for numerical differentation of a function assigned 
tabelarly is described in the paper. The orthogonal system 

-1 -1 . -1 -1 . 
11 cos x, 11 s1n x, 11 cos 2x, 11. s1n 2x, .•• 

is used. 

0 ME'.TODU ZA NUMERICKO DIFERENCIRANJE' .• U radu 
je opisan metod numerickog diferenciranja fuhkcije zadate tabe
larno. Koris6en je ortogonalan sistem 

-1 -1 . -1 -1 
11 cosx, 11 smx, 11 cos2x, 11 sin2x, ••. 

Let f(x1 },f(x2 }, ... ,f(xn} be the function values, found 

by a measuring for a series of real arguments x 1 , x2 , ••• , xn. 

Denote the most convenient empirical formula concerning f by 

f 
13

• For the function f we assume that: 

( 1} 

( 2} 

it is defined over [-11,1TJ, 

it has continuous derivatives f' and f" on [ -11,11] , 

the following inequalities are true 

1T 2 J (f" ( x} } dx < co , 

-1! ( 1T 2 ) l/2 
llf-f13 11= _l[f(x}-f13 (x}] dx <B, 

where .13 > 0 is assigned. 

On the basis of the known function f 8 , the construction 

of a polynomial P ,(x} which approximates evenly the function 
n,~ ~ 

f' ( x} over (- 11, 11} , is presented in this paper. This procedure 

is as follows: 
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The known function f B is approximated by a polynomial 

q (x) of degree n+l, such one that the inequality 
,n+l 

( 3) II f B - qn+l II ~ B 

holds, The polynomial qn+1 is obtained developing f B by Fourier' 

series using the orthogonal system 

-1 -1 . -1 2 -1 . 2 
11 cos x, 11 stn x, 11 cos x, 11 stn x , ••• , 

namely, 

( 4) 

where 

(5) 

qn+1(x) 

11 

ak = J fB( x) cos kx dx, 
-11 

11 

bk = j f 13 (x) sinkxdx, 
-11 

and n is chosen so that ( 3 ) is valid. 

According to ( 2) and ( 3) it follows 

(6) llf-qn+111 ~ llf-fBII+ llfB-qn+1ii,;;, 2 B· 

If the function f' is marked by f'(x) = u (x), then under 
0 

the condition ( 1) u ( x) is the unique solution of the integral 
0 

equation 
X 

(7) ju(t)dt=f(x). 
-11 

Let (7) be written in the operator form 

(8) Au = f. 

Introducing the functionalls 

and 

( 10) K [u] = II u'll2 
, 

the approximate solution of the equation ( 7) (i.e. ( 8) ) can be 

found by minimizing the functional K [ u J under the condition 

( 11) I [u, qn+1] :<. 4B
2 

(according to (6}). Denote a such minimum by uB( x}. Then, it 

is easy to prove that 

(12} 



In the following, we will show that uB( x) is the required 

ninimum if the condition 

13) B < ~~~qn+111 
is satisfied. 

Let 

Au= v 

be Fourier's development of v using the orthogonal system ( ¥ ) , 

namely 

Since 

(14) 

and 

where 

and 

1 00 

v(x) "' - I (ck cos kx + dk sin kx). 
1T k=1 

u(x) = v'(x), u'(x) = v"(x), it follows 

1 00 

u( x) "'- I [ck( -k sin kx) + _gk k cos kx] , 
1T k=1 

1 ()0 2 
u' ( x) "' -- I k ( ck cos kx + dk sin kx) , 

1T k=1 

1T 

ck k-2 j u'(x) cos kxdx, 
-1! 

dk = - k - 2 j u' ( x) sin kx dx. 
-1T 

Now, we have 
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rr[1 oo 1 n+1 J 2 
= J - I ( ckcoskx + dksinkx) -- I ( akcoskx+bksinkx) dx 

1T k=1 1T k=1 
-1! 

The coefficients ck and dk are defined by looking for the 

minimum of the functional K [u] under the condition I [u, qn+1] =4B2 

using the method of regulation: 



.P[u,qn+1] = K [u] + n I [u, qn+1] , I [ u, qn+1] 4B
2

. 

If we put A=~ > 0, then .P[u,qn+1J becomes 

1 n+1 2 2 
.P[u,qn+1] = ;-kL [ (ck-ak) +(dk-bk) J 

+ f ( ck 2 + bk 2) + 2. I k4 ( ck2 + bk 2) 
k=n+2 TI k=1 

1 n+\ 2 2 2 A 4 2 2 J 
; kLL( ck - ak ) + ( dk - bk) +if k ( ck + bk ) 

+ I (:} + ~k4)( ck2 + dk2). 
k=n+2 

Since the second sum is nonnegative, for the minimum is supposec 

that ck-+ 0 and dk -+0 for k;;;,n+2. Then, according to 

and 

we find 

(15) 

(lljl 
= 0 I 

3dk 

On the basis of ( 14) we obtain 

( 16) 1 n+1 ak cos kx + bk sin kx 
UB ( X) = iT I 4 ' 

k=1 1 + A k 

where A is determined from 

( 1 7) II uB- qn+1ll
2 

= 4B
2 

• 

that is 

(18) 

The left-hand side of ( 18) is monotonically increasing fun

ction of A which tends to 

n+1 
.l I(a2+b2) 
'IT k=1 k k 

when A -+ "'• Besides, B -+ 0 if A -+ 0 so that 

(19) 
1 n+1 2 2 2 
iT I ( ak + bk ) > 4B , 

k=1 



, .. --_from we immediately ( 13). Therefore, u 8 ( x) will be mi

imum of <P[u,qn+-1] if (13) is valid. 

It is easy to prove that u
13

(x) is minimum of 1l [u,qn+1] 

tor each x E(-rr,rr) and lim u
13

(x) = u (x) = f'(x) evenly on 
B -'>-0 ° 

( -rr, 1T) • 

According to the above, the polynomial P 0 ( x) has the 
n ',, 

form 

1 n+1 ak cos kx + bk sin kx 
P B(x) =- L 4 ' 

n, rrk=1 1+Ak 

AT here ak, bk and A are defined by ( 5) and ( 18) • 
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NUIIHHical Methods and 

Approximation Theory 

Nis, September 26-28, 1984 

ON AN APPLICATION OF HERMITE'S INTERPOLATION POL YNOIVIIAL 
AND SOME RELATED RESULTS 

GRADIMIR V. MILOVANOVIC AND JOSIP E. PECARIC 

ABSTRACT: 
In this paper we gave generalizations and improvements of integral ine

qualities from ClJ and C2J. In the proof we used the weU-known re

sult for the error of Hermite's interpolation polynomial. Some similar 

results are aZso given. 

0 JEDNOJ PRIMENI HERMITEOVOG INTERPOLACIONOG POLINOMA I NEKIM 
SRODNIM REZULTATIMA, U radu su date generaZizaaije i poboljSanja in

tegraZnih nejednakosti iz ClJ i C2J. U dokazu je korisden poznati rez

uZtat za gresku Hermiteovog interpolaaionog poZinoma. Neki sZiani rezul

tati su takodje dati. 

1. INTRODUCTION 

In the journal Amer. Math. Monthly the following two 

problems ([1],[2]) are posed: 

1° Suppose f(x) has a continuous (2m)-th derivative 

on a~ x ~ b, that lfC 2m\xJ I ~ M, and that f(r) (a) "' f(r) (b) 

~ 0 for r=O,l, ••• ,m-1. Show that 

b 

(1) )f(x)dx ~ 
a 

(m! )
2

tvJ .- -(b-a/m+l. 
(2m)! (2m+l)! 

2° Let f: [a, b] -+R be a. continuous function which is 

twice differentiable in (a, b) and satisfies f(a) = f(b) = u. 

Prove that 
b 

(2) )lf(xJidx ~ JL M(b-a)3, 
a 12 

\'There M= suplf"(xJI for xE(a,b). 
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The solution of first problem is given in [3]. 

The inequalities (1) and (2) are related to IYENGAR's 

inequality [4, PP• 297-298] l). 

In this paper \>Je shall prove some inequalities which 

generalize (1) and (2) in many senses. 

Let us define the two-parameter clas of polynomials 

P~m,k) (0 ~ m ~ k < n; m,k,n f:N) by means of 

p(m,k)(x) E p(m,k)(x;a,b) = 
n n 

where a and b are real parametars and 

( ) ( 'n-kc ) 
0 nm,k (a,b) =-l)n-m ! (b-a)m-n. 

m!(k-m)!(n-k-1)! 

For this polytJ.omials the follo\'ling relations hold: 

di pCm,k)(x)l 6 
dx~ n x=a im 

(i=O,l, ••• ,k; bim is the CRONECKER 
symbol), 

0 (i=O,l, ••• ,n-k-1), 

p(m,k)(x) = c<m,k)(a b) 
n n ' 

b 
)pCm,k)(x)dx = (n-m)!(k+l)(b-a)m+l. 
a n (n+l)! m+l 

If the values of derivatives of function f in x =a and 

x= b are kno\'m, using polynomials Jlm,k), HERMITE's interpon 
lation polynomial can be represented in the following form: 

k-1 
S k(x) = ~p(m,k-l)(x•a b)f(m)(a) + 

n, m=O n-1 ' ' 
n-k-1 

+ ~ p~~in-k-l;(x;b,a)f(m)(b). 
m=O 

1) On some generalizations IYENGAR€s inequality see [5-7]. 



..!. MAIN RESULT 

T;/e use the following notation 
b 

hcxJif(xJlrdx 
1/r 

@. 

b 

hcx)dx 

g(x)"' .f(x)- S k(x). n, 

a 

THEOFIEM1. Let x~.f(x) ne a n-times differentiable function 

mch that lf(n)(x)l ~ M (¥x"(a,b)). If Xr-?p(x) is an inte

~rable function on (a,b) such that 

O<.c ~ p(xJ ~ ?-c (Af:: 1, XE [a,bj), 

;he following inequality 

M[r] (g;p) ~ MC(b-a)n( :\B(rk+l,r(n-k)+l) ) l/r (r>O) 
nl Cr+(?.-lJB(rk+l,r(n-k;+l) 

!lOlds, where B is beta function and C = kk(n-k)n-k;nn. 

Proof. Since I f(n) (x) I ;:! M, the inequality 

\f(x)- sn,k(x;\ ~ ~ !Cx-a)k(x-b)n-k\ 

is valid' wherefrom (for( r :(:; (x-a)rk(b-x)r( n-k) dx) 1/r 

(4) M[rJ(g;pJ " ~ a ~ • 

p(x)dx 

According ·t;o J. ICARAJVIATA's inequality (8] (see also [5]) we 

have 

where 
nr 

N cr(b-a) and p"" (b-a)nrB(rk+l,r(n-k)+l), 

which combined with (4) gives (3). 
From Theorem 1, we directly get the following result: 
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COROLLARY 1. Let Xl-lr f(x) be a n-times differentiable functi

on such that l:r(nJ(xJI?; !'-1 (¥xE(a,b)) and let f(i)(a)=O 

(i=O,l, ••• ,k-1) and f(i)(b)=O (i=O,l, ••• ,n-k-1). Then 

(5) (b:a ~lf(x)lrdx)l/r ~ M(b~a)n B(rk+l,r(n-k)+l)l/r (r>O). 
~ a n. 

For n = 2m, k = m, r = 1, inequality ( 5J reduces to 

(6) 
f C ). 2m+lc 2 
Jff(x)fdx ~ M b-am!) 
a (2m)1(2m+l)! 

which generalize (2), and which is evidently stronger than 

the inequality (1). 

COROLLARY2.Let function x~f(xJ satisfy the conditions as 

in Corollary l. If x~p(x) is arbitrary nonnegative function, 

then 

(7) M[r)(f;p) ~ IVfkk(n-k~n-k(b-a)n (r>O). 
n!n 

REMARK1.Corolla.ry 2 can be formally obtained from Theorem 

1 putting~-.. +oo. Using NJSLUND's result ([9]), theine

quality (7) can be substituted by a somewhat simpler but we

aker inequality 

3. SOME SIMILAR RESULTS 

According to the results from the previous section and 

the inequality I ~ h( x) dx I & I I h( x) I dx, we obtai u the fo llm•ing 

inequality 

(8) 

~f(x)dx- t= 2m-k): em) (b-a)k(f(k-1) (a)-( -l)k:t(k-1) (b) )I 
a k=l 2m . k 

~ M(m!)2(b-a)2m+l 

(2m)!(2m+l)! 

REMARK2.If ik-l)(a) = (-l)kf(k-l)(b) (k=l, ••• ,m), inequa-

lity (8) reduces to (1). 



THEOREM2.Let In=[O,l, ••• ,nJ and let fPkllcH be a har
n 

tonic sequence o:f polynomials on [o, 1] (P'(x) = P 
1
(x)). If n n-

XI-'P'f(x) is n-times differentiable function such that 
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1:rCn) (x) I ~ M (¥x E: (a, b;), then 

\
P J:f(x)dx- Ln ( -l)k(b-aJk(Pk(O).:rCk-l) (aJ-Pk( l)f(k-l) (b);\ 

(9) a k=l 
1 

~ M(b-a)n+l )jP {tJidt. 
C n 

Proof. I:f h(tJ = f(a+t( b-a)) we have )~f(x)dx = 
1 

(b-a))0h(t)dt, \·Jherefrom, applying integration by parts on 

the last integral, we obtain 

1 1 

(10) )h(t)dt = h(l) 
0 

- ~th'(t)dt. 
0 

Since P1(t) 

may be represented in the form 

1 1 

P
0 
~h(t)dt = P1 (1Jh(l)-P1(0)h(0) - ~P2(t)h'(t)dt. 

1 
By succesive integration by parts of ) 0P2(t)h'(t)dt 

(n-1)-times, we obtain 

1 n 
P

0 
)h(t)dt = LC-l)k(P ·(O)h(k-lJ(O)-P (l)h(k-l)(l) 
0 k=l k . k 

1 
+(-l)n )p \t)h(n)(t)dt, 

0 n 

from where (9J :follows. 

COROLLARY a. Let function x t-'>:f( x) satisfy the conditions as 

(k) )k-1 (k) ) ) in Theorem 2 and let :f (b)= ( -1 f (a (k=O, ••• ,n-1 • 

Th0n 



8 

(11) !tf(x)dx t ~ ~1~b-a)n+l. 
a I 2 (n+l)! 

To nrove this, tat:e P (tJ =- --\- (t -1/2)11
, i"n Theore' ::,. n n. 

REMARK3. ~:ce inequality (ll) is obtained in [6] with some-

V!hat stricter conditions for f. 
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Numerical Methods and 

Approximation "fheory 

Nis, September 26-28, 1984 

CLASSIFICATION OF FORMULAS 
FOR N-DIMENSIONAL POLYNOMIAL INTERPOLATION 

Dusan V. Slavic, Milorad J. Stanojevic 

lSTRACT: 

e increased significance of interpolation in complicated computer calcu
tion of the function values for either one or several variables imposes the 
ed for evaluation of the possibilities and the efficiency of some interpola
m formulas. The paper gives a classification of the formulas for polyno
ial interpolation in the n-dimensional space ( n = 1, 2, 3, .•• ) • 

ASIFIKACIJA FORMULA ZA N -DIMENZIONALNU POLINOMSKU INTERPO
LACIJU. Povecani znacaj interpolacije u komplikovanim kompjuterskim iz
racunavanjima vrednosti funkcije jedne i vise promenljivih namece potrebu 
za vrednovanjem mogucnosti i efikasnosti pojedinih interpolacionih formula. 
U radu je data klasifikacija formula za polinomsku interpolaciju u n-dimen
zionalnom prostoru ( n = 1, 2, 3, ••• ) • 

CLASSIFICATION 

The classification is hierarchical with the following order of priori

ties: according to the number of space dimensions as the most important 

criterion, according to the related number of nodes for the same number 

of space dimensions, according to the positions of the nodes and in relation 

to the algebraic accuracy when the above three. conditions are satisfied. 

The algebraic accuracy of each formula is expressed by a polynomi

al, having coefficients with arbitrary values, so that the formula is exact 

for that polynomial ( not only approximate ) . 

Known formulas are transformed in this paper in order to enable 

the classification. 

In applications, the cases with symmetric node positions are of spe

cial interest. In the notation used in this paper the subscripts with the func

tion denote node positions. 
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ONE-DIMENSIONAL INTERPOLATION 

In the case of one-dimensional interpolation the general formu-

la is 

( 1) 

usually referred to as Lagrange formula containing the following four known 

specific formulas, for example in [ 1]. 

f(x) = a 

f(x) f
0 

f(x) a + bx 

f(x) 

f(x) 

f(x) = ( 1 - x)f
0 

+ xf
1 

2 
a+ bx +ex 

1 2 1 
f(x) = -zx(x- 1)f_

1 
+ (1- x )f

0 
+ 2x(x + 1)f

1 
2 3 

a+ bx +ex + dx 

+ 
+ 
+ 

f(x) = -~x(x -1)(x- 2)f_
1 

+l(x
2

- l)(x- 2)f
0 

j 1 1 2 
-- x(x + 1)(x- 2) f + -x(x - 1)f 

2 1 6 2 

TWO-DIMENSIONAL INTERPOLATION 

In the case of the two-dimensional interpolation three-point formulas 

are presented first. These formulas are function approximation by means o: 

the plane z = A + Bx + Cy. t 0 I I 1111 

f(x,y)=A+Bx+Cy -f- ---+-- +--
f(x,y) (1 -x -y)fo,o +xf

1
,
0 

+ yf
011 

f(x,y) = (1 -x- 2y)fo,o + (x + y)£
1

,
0 

+yf_
1

,
1 

f(x,y) 
'1 1 

= 2 ( 1 - X - y )f_1 
1
0 + yf0 

1
1 + 2( 1 + X - y )f1 

1
0 



.Lhe general three-point formula has been considered, for example, 

Young and Gregory and it reads: 

f(x. ,y.) = f. 
1 1 1 

2) f(x,y) = (a
1

f
1 

+ a
2

f
2 

+ a
3

f
3
)/d 

al (x- x2)(y- y3) - {x- x3)(y- y2) 

a2 (x-x3)(y-yl)- (x-xl)(y-y3) 

a3 (x-xl)(y-y2)- (x-x2)(y-yl) 

d = (x2- xl)(y3- yl) - (x3- xl)(y2- yl). 

The formula (2) is equivalent to the following formula given by 

.erezin - Zitkov ( r and R are vectors ) 

-+ -+ 
rk = (x- xk)i + (y- yk)j 

-+ -+ 
rkQ. = (xk- xQ.)i + (yk- yQ.)j 

-+ -+ 
RkQ. = (yk- yQ.)i - (xk- xQ.)j 
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(r2R23) (r3R31) 
1 

(r1R12) 
f(x,y)=---f(x

1
,y

1
)+ f(x

2
,y21 + --- f(x 3 ,y3). 

(r12R23) (r23R31) (r31Rl2) 

This formula may be written in a shorter way, as follows 

(3) f(x, y) 

where 3 represents the number of cyclic permutation. 

Four-point formulas which include the term with xy are presen

ted here 

f(x ,y) A + Bx + Cy + Exy 

f(x, y) (1- x)(l -y)fo,o + x(l -y)f
1 , 0 

+ (1- x)yf
0 , 1 + xyf1 , 1 

f(x, y) ..!. x (x - 1) f ( 1 
2 

) f 
1 

( ) f f 

2 +=. -~2xx+~ ·ro:· 



2 

1 2 1 ) ) f(x,y) = -x(x- l)f + (1- X )f
0 

f\+(-2x(x + 1 - Y £1 0+yf1 1• 
2 -1 ,o . ,v ' ' 

The following five-point formula instead of the term with xy 

. h 'h 2 d 2 
contams t e terms w1t. x an y 

f(x,y) 
2 2 

A + Bx + Cy + Dx + Fy 

f(x,y) = 

The following six-point formulas ·contain all the terms mentio

ned earlier 
2 2 

f(x,y) A+ Bx + Cy + Dx + Exy + Fy 

f{x,y) 
1 = -(1- X- y){2- X- y)f + x(2- X- y)f 
2 o,o 1,0 

1 + y(2 - x- y)f + -x(x- l)f 
0,1 2 2,0 

1 
+xyf1 1 +2y(y- 1)fo 2 , , 

f(x,y) 
1 (1- x)(1 -y)f + (x- -y)(1 -y)f o,o 2 1,0 

1 1 
+ (y - 2x)(1- x)f

0
,
1
+ 2x(x- 1)f

2
,
1 

1 
+(x(1-x) + y(1-y) +xy)£

1
,
1 

+ 2y(y-1)f1 , 2• 

The most general six-point formula has been considered by 

Berezin and Zitkov, who present a complicated formula [ 2]. 

This formula can be presented in a simpler way by the notation 

of the formula ( 3) , as follows 

l(r 2R23) (r l4s) (r62R23)(r64R45)1 

f(x, y) =[ 
(r2R24)(r3R35) (r62R24)(r63R35) 

f(x1,y1). 

6 (r12R23)(r14R45) (r6ZR23)(r64R45) 

(r12R24)(r13R35) (r6l24)(r63R35) 
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The following nine-,point formula has the same order of accuracy. 

2 2 1 ') 
f(x,y) = (1- x ){1- y )f

0 0 
+ -

2
x(1 + x- xy~)f 

' 1,0 
1 2 1 2 

+ -y( 1 + y - x y)f - -x( 1 - x + xy )f 
2 0,1 2 -1,0 
1 2 1 

- Zy(l- y + x y)f0 ,_
1
+4xy(1 + xy)f

1
,
1 

1 1 . 1 
--xy(1-xy)f +-xy(l-xy)f +-xy(1+xy)f • 

4 1,-1 4 -1,-1 4 -1,1 

J. H. Lambert [ 1] gave the formula which can be concisely 

written as 

n m 
( 4) f(x, y) C C < r:;_k )( 

y 
)6 f 

k m-k,k o,o' 
m=O k=O 

where: 
/':. f o,o p,q f 

p,q 

/':. f f -f 
1 ,o p,q p+1,q p,q 

/':. f o, 1 p,q 
f - f 
p,q +1 p,q 

/':. f 
n+l ,m p,q 

/':. /':. f 
n,m 1 ,o p,q 

/':. f 
n,m+1 p,q 

/':. /':. f 
n,m o, 1 p,q 

A specific case of the ten-point formula ( 4) is 

f(x,y) 
2 2 3 2 2 3 

A + Bx + Cy + Dx + Exy + Fy + Gx + Hx y + Ixy + Jy 

f(x,y) = _!(1- X- y)(2- X- y)(3- X- y)f 
6 . o,o 

+ _!X ( 2 - X - y) ( 3 - X - y) f 
2 1 ,o 

+ .!y(2- X- y){3- X- y)f 
2 o, 1 

+ _!y(y- 1){3- X- y)f 
2 2,0 

+ xy(3- x- y)f + lx(x- 1)(3- x- y)f 
1,1 2 0,2 

1 1 
+ 6x(x- 1)(x- 2)f

3
,
0 

+ 2xy(x- 1)f
2

,
1 

+ lxy(y- 1)f + .!y(y- 1)(y- 2)f 
2 1,2 6 0,3 



F. B. Hildebrand gives the following formula 

2 2 3 
f(x,y) = A+ Bx + Cy + Dx + Exy + Fy + Gx 

2 2 3 3 3 
+ Hx y + Ixy + Jy + Lx y + Nxy 

f(x,y) = ~(1- x)(1 -y) [2 + x(1 -x) + y(1- y)] f
0

,
0 

+ ~x(x- y) [2 + x(1- x) + y(1 -y)] f
1

,
0 

+ ~xy [2 + x.(1 -x) + y(1- y)] f
1

,
1 

+~(1-x)y[2+x(1 ~x) +y(1-y)] f
0

,
1 

+ ..!x(x -1 )(x- 2)(y:.. 1)f 
6 -1,0 
1 

+ -(x -1)y(y -1)(y- 2)f 
6 o,-1 
1 

+ 6xy(y- 1) (2 - y)f
1 1

_
1 

1 2 
+ -x(1- x )(y -1)f 

6 2,0 
1 2 1 2 

+c;x(x -1)yf
211

+ 6 xy(y 

THREE-DIMENSIONAL INTERPOLATION 

For interpolation in the three-dimensional space the following 

formulas are given 

f(x,y,z) = a 

f(x,y,z) 

f(x,y,z) = f o,o,o 

f(x,y,z) ( 1 -X - y - z)f0 0 0 + xf1 0 0 + yf0 1 0 
' ') ' ' ' ' 

+ zfo 0 
' '1 



2 2 2 
r(x,y,z)=a+Sx+yy+oz+EX +z;xy+ny +eyz+tz +Kxz 

where: 

1 
f(x,y,z)= 2(1- x- y- z)(2- x- y- z)f

0 0 0 ' , 
+ x(2 - x - y - z)f 

1,0,0 

+ y(2- x- y- z)f o, 1 ,o 

+ z(2- x- y- z)f 
0,0,1 

1 
+ 2x(x- 1)f2,0,0 + xyf1,1,0 

1 
+2y(y- 1)fo 2 o + yzfo 1 1 , ' , , 

1 
+ 2z ( z - 1) fo o 2 + xzf1 o 1. 

' , ' , 

N -DIMENSIONAL INTERPOLATION 

Suppose that the four-dimensional-space points are provided 

f(a., b., c
1

, dJ, 
1 J ( JC 
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The aim of interpolation is the calculation of the function value f(a,b,c,d). 

By intersecting the hyperplanes the following formula is obtained 

nd 

f(a.,b.,c
1 
,d)~[ 

l J ( t=l 

i=1(1)na' j=l(l)nb' 

By intersecting the planes the following formula is obtained 

n (n c c 
f(a.,b.,c,d) ""' L n 

1 
J k=1 m=1 

m;ik 

i=1(1)na' j=1(1)nb. 



By intersecting straight lines the following formula is obtained 

i=1(1)n • 
a 

By applying the mentioned Lagrange formula ( 1) it can be obtained 

n ( n a a 

f(a,b,c,d) = !;_ rCl 
mn 

_a_-_a_m_) f(a. ,b,c ,d). 
a.- a 1 

1 m 

For the dimension number greater than four, the beginning of the pro

cedure is analogous, and the end is the same as given in the above algorithm. 

When dealing with the interpolation having a larger number of points 

in then-dimensional space the simplicity of notation is important. 

A more extensive work on formulas with a larger number of points is 

expected in future. The aim of this paper is not to deal with the formulas 

based on a larger number of pointsl because the application of these formu

las is smaller due to larger computation procedures. Due to the limited 

length of the paper some more complex, but useful formulas, are not included 

For this reason the paper contains only the most important formulas 

for computer calculation. 

G. Alikalfic, A. Djordjevic, A. Fiser-Popovic, D. T. Jovanovic, 

D. S. Mitrinovic have read this paper in manuscript and have made some 

valuable remarks and suggestions. 
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ON APPROXIMATIONS OF SOLUTIONS OF SECOND ORDER LINEAR 

DIFFERENTIAL EQUATIONS 

Bozo Vrdoljak 

ABSTRACT: 

The paper deals with second order linear differential equation with functional 
coefficients. For the corresponding sufficient conditions we obtain results on 
approximation of certain classes of Cauchy's solutions and on behaviour and 
stability of all solutions. The results were obtained by transforming the second 
order linear equation to a respective linear system of equations and by stu
dying solutions of that system with respect to the "circular" neighbourhood of 
an integral curve. The obtained results are generalized to a quasi-linear equa
tion as well. 

0 APROKSIMACIJAMA RJESENJA LINEARNE DIFERENCIJALNE JEDNAD.LBE 
DRUGOG REDA. U radu se proucava linearna diferencijalna jednadzba drugog 
reda s funkcionalnim koeficijentima. Uz odgovarajuce dovoljne uvjete dobivaju 
se rezultati o aprokslmaciji 'odredenih klasa Cauchyevih rjesenja, kao i o pona
sanju i stabilnosti svih rjesenja. Do rezultata se dolazi transformiranjem line
arne jednadzbe drugog reda na odgovarajuci Iinearan sistem jednadzbi i proma
tranjem rjesenja tog sistema u odnosu na odgovarajucu "kruznu" okolinu neke 
integralne krivulje. Dobiveni rezultati se poopcuju i na kvazilinearnu jednadzbu. 

Let us consider the equation 

(1) Y"+p(t)y'+ q(t)y::f(t), 

where p,q,fEC(I), I=<!_,CXl>. Let y:'Y(t), 'YE:C
4
(I) be an arbitrary so

lution of equation (1). We shall use functions (3,pEC'(I), p(t)> o on I and 

notations p
0
:p(t

0
), f3

0
=f3(t

0
), p

0
:p(t

0
), ·'¥

0
='Y(t

0
), Y

0
=y(t

0
), Y~=y'(t0 ). 

THEOREM 

(2) 

(a} If 

(3) 

then all solutions 

(4) 

I. Let us take functions (3 and p such that 

( (3 1 + (32 + (3p + q - 1 )2 < 4 ( -(3- p - p 'I p )( (3- p1 I p) on I. 

(3-p'lp < 0 on I, 

y:y(t) of equation ( 1) satisfying initial condition 
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t E I 
0 



sausfy also condition 

(5) \y(t) -'l'(tll < p(t) for every t> t
0

• 

(b) If 

(6) 13- p' /p > o on I, 

then problem ( 1)-( 4) has at least one solution satisfying condition ( 5). 

Proof. For equation ( 1 ) let us introduce the substitute 

(7) y'= x+13(t)y, 

where x = x ( t) is a new unknown function. Equation ( 1) is transformed to the 

system of equations 

x' = -(13 + p) x-. <13'+ 132+13p+q)y + f 
(8) 

Y1= X+i3Y. 

Let K::{ (x,y,t): x::<p(t), y::'l:'(t), tEl}, where <pEC.(I), cp(t
0

):::0 

is an integral curve of system (8). Let Q = R2 x I and 

W::: {<x,y,t)EQ : p\t)[(x-cp(t))
2 

+(y -'l'(t))
2
)< 1 J 

be open sets. Let :< t) be a tangential vector or the integral curve ( x(t), 

y(t), t) of system (8) in points of surface ow (ow:::c.tw'\w), and let v(t) 

be vector of external normal on surface a w, i.e. 
-2 -2 

't:(t):::(x'(t),y'(t),1), v(t)::((x-<p)p ,(y-'l')p , 

- [ (x -fll)2p' +(x-cp)pcp'+(y-'1')2 p'+(y-'l')p'l''] p3). 
Let us consider now the scalar product P ( t) = ( 1:1 v) in the points of 

surface () w. We have 
-2 -2 

P(t):(-13-p -p'/p)(x-<p)2 p +(13-p'/p)(y-'!') 2 p + 
(9) 

+( 1-13'-132-13p-q) (x- cp) p-1 (y- '!:') p1 • 

Let us note that P(t) is a quadratic symmetric form 

where 
a 11 :: -13-p-p'/p, a 12= a 21 =(1-13'-j32-13p-q)i2, a 22= 13-p'/p, 

( 10) X::(x-<p)p-• , Y: (y-'l')p1
, 

Moreover, it is sufficient to note the following. 

(a) Conditions (2) and (3) grant conditions -a 11 >o, a
11

a22-a;
2

>o on 

I, and according to Sylvester's criterion it follows that P(t)<O on I. Rela

tion P(t) < 0 means that set &w Is a set of points of strict entrance for 



integral curves of system (8) with respect to sets w and Q • Consequently, 

all solutions of system (8) satisfying initial condition 

X~+ ( y 0 -IJI 0 )2 ~ p~ ' t 0 E I 

(x
0 

= x( t
0

)) satisfy also condition 
2 2 

(x{t) -QJ(t)) +(y(t)-IJI(t)) < p2 (t) for every t> t
0

• 

Since, in view of (7), x = y 1 
- 13 y all solutions of equation ( 1) satisfying 

0 0 0 0 

initial condition ( 4) satisfy also condition (5). 

(b) Conditions (2) and (6) grant conditions a
11 

>O, a
11

a 22-a?12> 0 on 

I, and it follows that P(t) > 0 on I. Tbus 'a w is a set of points of strict 

exit of integral curves of system (8) with respect to sets w and Q • Henc!'!, 

according to retraction method (l4J), there exists at least one integral curve 

of system (8) which belongs to set w for every t EI. Consequently, problem 

( 1)-( 4) has at least one solution satisfying condition (5). 

Let us note that conditions of Theorem 1 are simplified if functions 13 

and p are taken in a special form. 

COROLLARY (p(t):: r). (a) ( 13(t): -1) If 

p > 1 , 0 < p - 2 yp::1 < q < p + 2 yp::-1 on I , 

then all solutions of equation ( 1) satisfying initial condition 

( 
2 I 2 

Yo-'¥ o) + (Yo+ Yo) .::; r 2 
' 

where r is a positive constant, satisfy also condition 

( 11 ) I y(t)- IJI(t) I < r for every 

(b) (13(t) = 1) If 

t > t 
0 

p < -1, 0 < - p -2 .y:p::j < q <- p + 2 v::r;-:::1 on I , 

then at least one of solutions of equation ( 1) 'which satisfy initial condition 

2 I 2 
(yo-'l'o) +(yo-yo)~ r2 

satisfies also condition ( 11 ). 

COROLLARY 2 (13(t):: 0). Let 

(q-1)
2 < 4(p+p1/p)p 1/p ani. 

{a) If p' > 0 on I, then all solutions of equation ( 1) which satisfy ini

tial condition 

( 12) 
2 .?. 

(y - '¥ ) '+ y 1 < p
0
2 , t E I 

0 0 . 0 0 
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satisfy also condition ( 5) • 

(b) If p 1 < o on I, then problem ( 1 )-(12) has at least one solution sa

tisfying condition (5 ). 

COROLLARY 3 (f3(.t):: -p(t)). Let 

( q- pt - 1) 
2 

< 4 ( p + p' /p )p1 I p on I. 

(a) If p1 > o on I, then all solutions of equation ( 1) satisfying initial 

condition 

2 I 2. 
( 13) (yo-'l!o) +(yo+poyo)· ~Pi) 

satisfy also condition (5 ). 

(b) If p1 > o on I, then problem ( 1 )-(13) has at least one solution 

satisfying condition (5 ). 

( 14) 

or 

( 15) 

THEOREM 2. (a) If there exist functions f3 and p such that 

2f3+ p ~ 0' \ f3
1
+ f3 2+ f3p+ q- 1 \< 2·( f3+ p +p'/p) 

on I, then statement (a) of Theorem I holds true. 

(b) If there exist functions f3 and p such that 

2f3+p ~ o, \ f3~f3 2 +f3p+q-1\< 2(-f3-p-p1/p) 

or 
2f3+p ~ o, lf3

1
+f32 +f3p+q-1\< 2(f3-p1/p) 

on I, then statement (b) of Theorem I holds true. 

Proof. Let us use here the first part of the proof of Theorem I until 

the formation of the scalar product P( t) according to formula (9). We shall 

also use notations (10). It is sufficient to note that the following estimates 

for P(t) hold true. 

(a) Since ab~ (a2 +b2)/2 for every a,be:R, on ow it is valid 

P( t) ~ ( -f3 -p- p1/p) X2 +( f3 -p1/p) Y2+11- f3
1
- f32 -f3P- q I. (X2 + Y2) /2 = P( t). 

In view of (14) on 'aw it is valid 

P(t) = (-f3-p-p1/p+ l1-f3
1
-f32 -f3p-q\!2)(X2 +Y2 )+(2f3+p) Y2 = 

= (- f3 -p- p'tp + r 1- f3'-f3 2 -f3p- q 1,2 >+<2f3+ p )Y2 < o. 

Moreover, in view of (15) on ~w it is valid 

P(t) = (f3-p 1/p+ \1-f3
1
-f3 2 -f3p-q\!2)- (2f3+p)X2 < 0. 



(b} Here it should be noted tf\at on ;) w 

P( t) :? (- fl- p - p 1/P) X2 + ( fl-p'!p) Y•- I 1 - fl
1
- fl 2 - i3p-q \ (X• + Y• ) I 2 = !: ( t) 

nd that !:(t} > 0. 

Conditions of Tneorem 2 are simpfffied if functions fl and p are taken 

in a special form. For example fl(t):::0,-1, 1' p(t):p
0
e-s(t-to>, se:R. 

Using the obtained results and the known properties valid for the linear 

jjfferential equation, we can draw the following conclusions related to the 

~uestions of stability and approximation of solutions of equation (I). 

I. If function p is bounded on I, then in cases (a) of all given state

nents we have stability of all solutions of equation (I) with the function of 

;tability p (t5]). If p(t)-o, t_,.oo, we have asymptotic stability of all so

utions with the function of stability p. 

2. If p(t)-J> oo , t-=, then in cases (b) of all given statements we 

1ave instability of all solutions of equation (I) with the function of instability 

3. Considering the approximation of certain classes of solutions the re

sults given in cases (a) with the bounded function p are very significant. Ap

proximation is particularly good when p ( t >- o, t _,. oo. In that case we have 

precise asymptotic behaviour of certain Cauchy's solutions. Consequently it 

should be noted that conditions of Theorems I and 2 do not change if instead 

of function p ( t) we take function c p ( t) , where c>o is an arbitrary consta"nt. 
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In the case of a homogeneous equation (f(t) =o) it is interesting to con

sider the behaviour of solutions in the neighbourhood of a trivial solution 

y(t): o (case 'l'(t):O). 

Remark. Statements of Theorems I and 2 are completely valid also for 

a quasi-linear equation 

Y"+p(y,t)y 1 +q(y,t)y:f(y,t), 

. where functions p, q and f satisfy the conditions necessary for the existence 

and uniqueness of solutions on R><I, only if the respective conditions of Theo

rems I and 2 (p:p(y,t), q:q(y,t)) hold true on aw'. 

Example I. All the solutions of the Bessel's equation 

which satisfy the initial condition 

(y -'1' )2 + (y'+y /2t )2:;:; p2' 
o o ·o o o o 



where .!:_>\>..2 -1!4\!(1-2s), sER, O<s<1/2, then also satisfy condition 

I y{t) -'l'(t) \ < p (t /t)
5 for every t >t • 

0 0 0 

For example, for X.= 1/2, 'l'(t): 0 all solutions of the Bessel's equation 

satisfying initial conditions y = 0, 1 y 1 \ ~ p , t > o satisfy also condition 
0 0 0 0 s . 

\y(t)\ < p (t /t) for every t>t • Let us note that for X.= 1/2 Bessel's equ-o 0 0 

at ion has a general solution y = ( c1 cos t + c2sin t) Nt. 
The proof of this result follows from Theorem I when 1:\(t) = -1/2t, 

p{t) :p (t /t) 8
• 

0 0 

Example 2. Let us take equation 

Y"+p(t) (y 1+y)+q{t)y:d(t), 

where p(t) ~2, \q(t)\<2(1~s), sER, O~s < 1, on I, t> 0. All solu

tions of this equation which sastify the initial condition 

also satisfy condition 

\y (t) -'l'(t) \ < -s(t-t ) Poe o 

t 8I 
0 

for every t> t
0

• 

It is interesting to consider the case f{t):: o, 'l'{t) ::0. 

This result follows from Theorem 2 when 1:\(t) = -1 , p(t) :p
0
e-s(t-to). 
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ON HYPOTHESIS TESTING IN SPLINE REGRESSION 

K. Sur! a, E. Nikolic, Z. Lozanov 

ABSTRACT: 

Algorithm given in [21 for deter-ming the number and the position of knots 
of the spline function is modified according to statistical tests in [B] 
for fitting the cubic spline regression. Several theorems conected with te
sting continuity of the third derivative are proved. 

0 TESTIRANJU HIPOTEZA U SPLAJN REGRESIJI: AZgoritam datu [21 za odredji
~anje broja i pozicija avorova splajna je modifikovan u skZadu sa statisti
Jkim testovima datim u [BJ za'fonniranje kubne spZajn regresije. Dokazane 
~u neke teoreme vezane za testiranje hipoteza o neprekidnosti tredeg izvoda. 

1. In modeling, curve fitting or recovering functions contaminated 

by noise, the problem of determining the minimal number and optimal positi

ons of knots is still open, although some attempts had been made, see [51, 

[10], [11j. In [2], [3] an algorithm for automatic determination of the 

number of knots and their positions for fitting a least square spilne of 

k-th degree is given. The objectives are (i) the given values of dependent 

variable should be fitted closely enough, (ii) the approximating spline sho

uld be smooth enough, in the sence that the discontinuities in its k-th de

rivative are as small as possible •. Also, it Is presumed that the data are 

not contaminated by noise. In fitting spline regression curve to discrete, 

noisy obsrevations, besides the problem of c~oice of knots, occurs the pro

b) an of their statistical testing. These problems are investigated in [1], 

[4], [7], [8], [10], [11]. Hypothesis testing in B-spline regression is 

investigated in [8] and [11].This paper is an attempt to applicate the 

results obtained in [2] to B-spllne regression, and to mcdify the algorithm 

in [2] according to the :>tatistical tests in [8]. 

2. Given the measured function values yq, at the points xq' q=1 , ... ,m, 

xq<xq+ 1 , coisider the model 

( 1) y 

- tB~3 (x1) ... B g.(x1 j 
X - • • . . 

B 
3 

(x ) ... B (x ) 
- m g m 

E: = [['] 
m 



~·· 

srvN(O,cr 2I), B. (x) are B-splines functions of the third degree on the grid 
I 

a= A. 0 <A. 1 <.~.<A.9 <A.g+l= b, with additonal knots x_
3

=A._2 =A._ 1=a, b~\g+Z 

\ 
3
=\ 4• We suppose that there must be at least one·s.ubset of g+4 

g+ g+ 
strictly increasing values x , (i=-3, .•. ,g) such that q. 
(2) x 4<A.ro::x 

1 
(condition Schoenberg and Whitney). 

qi- qi 

The approximation criterion is as In [2] 
g g 

Minimize E
1

(.E 
3
c.a. ) 2

, subject to the constraint 
q= I=- I I ,q 

(3) m g 
~ 1 ~Y -. E 

3
c. B •. (x ) ) 2 < s · q- q 1=- I I q 

where S is given, nonnegative constant (smoothing factor). 

(4) a. =B.(\ +0) - B.(\ -0), (q=l , .•. ,g), (i=-3, .•. g). 
I ,q I q I q g 

We remark that our spline function S(x) = .1:: 
3
c.B. (x) becomes a single 

g I>=- I I 

polynomial on [x ,x J if . E
3
C.a, ,=0, (j;=q+1 , ... ,r-1), a:c;x ,x ~b. q r 1 =- 1 1 , J q r 

In [2] it is shown that problem (3) has a solution and that the algorithrr 

given there I eads to the number of knots wich 

m gk 
F(n) = E1 ("- .E 

3
c. (p)B. (x )) 2 .$ S, 

"' q= "q I=- I I q 

where p- 1 is Lagrange's multiplier of problem (3). Also, the relation be

tween the parameter p and the number of knots Is given. So, for p= we ge1 

the least square spline, and for p=O we get the 1 east square polynomial. 

3. For testing the continuity of the third derivative at the knot 

Aj we test the following hypothesis (see [8]): 
g 

H
0 

.E 
3
c. (B. (A.+O) - B.(/. .-0)) 0 

1=- I I J I J 

We use the statistics 

( 1 'C) 2 (1 .. (XX') - 11} - 1 
F (m-g-4) or F = 

y ( I -X (XX' ) - 1 X' ) y 

2 

(!.::.fl. 
V ( 1 'C) 

A 

where V(l'C) is estimated variance of linear combination t'C, l'=(a_
3
,j'., 

a 
2 

., ... ,a .). Un'der null hipothests F has Fisher distribution F
1 4• ,.. +J q ,J ,m-g-

Using the fact that the linear combination which is tested is contrast, 

!see [8]), it is enough toevaluateg+3 components of vector l. If hypo

thesis H
0 

is accepted, we shall say that knot \. is statisticaly not si-
J -· 

gnificant. Statisticaly not significant knots we shall denote by\,, 
- J U=1 , ... ,g). 

4. Denote the spline function with knots \,(j=O, •.. ,g+l) by S (x). 
J g 

The idea of our algorihtm is: Determine the least square spline s
0

(x) (si· 

ngle polynomial). If the sum of squares of residuals for s
0

(x) is less 

than S, s0 (x.) is the solution to our problem. If not, we determine 



successive least square splines Sg,(x), j=1,2, ... untill we find 

F
9 

= ~1 (y- sg (xq}) 2 ~ s J 
j q= q j 

dsfied. The additional number of knots Ligj and their positions in each 

eration is determined according to algorithmi (see [2]): 

1 j=O 
Lig.= { 

J min{Li1,Li2,max{1 ,Li3,Li4}} , j=1,2, ... 
with 

=2LigJ_ 1 , Li2=m-4-gJ, LiJ.=IJigJ_,J2J ,Li4=[(FgJ -s)LigJ_ 1f.IFgr 1- F9J IJ 

a additional knots are then located inside the intervals [A. 1 ,A.i+,J with 

rgest partial sum of squares of residuals. For details see[?]. 

Let knots A.. (j=O, ... ,g. 
1
) bedeterminied. As thenextiteration we: 

J J+ 
f Determine spline sg:(x). 

~'Test all knots A.. ~(i=1, ... ,g.) using the given statistical test tn 3. 
I J 

(i) If Fgj~ S, Sg; (x) is the solution to our problem. If not we go to (iv) 

J) The addi tional:lknots are de terminated according to the algorithm I 

1 New set of knots A.r (i=O, ... ,gj+l+l) Is formed takeing statisticaly 

significant knots fromJ(ii) and additional knots from (iv). 

(vi) Put g.=g. 
1 

and go to (i) 
J J+ 

From g.<g. 
1 

and g.<g. i.t fo.Jlows, F- ~ F and F- ~ F . Suppo-
J J+ J J gj gj+l gj gj 

sing that the sum of square!:' of residuals will not be significantly cha

nged by substituteing knots A.. (i .. J, ... ,g.) by X. (i=l, ... ,g.) we can con-
I J I J 

elude that the relation (5) will be satisfied after finitenumber of itera-

tions. Namely, for maximal number of knots g=m-4 we get a interpolating 

spline, i.e. F _4=0. As the values Fg. and Fg are evaluated the rela-
m J j+l 

tion Fg ~ F can be checked. If significant deviation occurs, it is 
j+1 gj - ' 

possible to take g. instead g .. This algorithm, compared with algorithm in 
J J 

[2] changes the position of knots, arid we get a curve with statisticaly 

significant knots. 

5. Befor:e proving several statements, we shall introduce some defi

nitions. and notat.ions. Denote by P. {x)=a.x3+b./+c.x+d. the restriction of 
, I I I I I 

function S (x) on interval [A. .•.• ~''+l] and put P={P. {x), i=O, ... ,g}. The 
I I I 

relations bet\\een coeficia1ts of P.(x) and coeficients of S (x) are 
I 

given i n [9 J. 
DEFINITION 1. Polynomials Pi (x) and Pi_

1
(x) are not statisticaly different 

at a prescribed level of significance a, if their corresponding. coeficients 

are not statisticaly different at the level a. 

DEFINHHON 2. Function S(x) i~ statistical equivalent of spline S{x) at 

the prescribed level of significance a if 



16 

- ( - 3 - 2 ,-f. 1 A h (i) S(x) = Q. x) = a.x + b.x + c,x +d., x c..Lll· ,]..1.
1
+1 , M ·~~"• w ere 

I I I I I I 

M = { 11· , i =0, •.. , r+ 1 } , A = {A. , i =0, ..• , g+ 1} , and Q ·:0:: P, where 
I I 

Q = {Q. (x), i=0,1, ... ,r}. 
I 

(ii) for fixed values x, S(x) and S(x) are evaluated using the polyno-

mials whicw are not statisticaly different at level a. 

(iii) Discontinuities of function S(x), its first and second derivatives 

at points ll· are not statisticaly significant at the level a. 
I 

Lena 1. If hypothesis H
0 

is accepted at the level a, then polynomials 

P. 
1 

(x) and P. (x) are no.t statlsticaly different. 
J- J 

Proof. Hypothesis H
0

is equivalent to the hypothesis 

Ha : 6(aj- aj-l) = 0 and H0. A(aj -aj_ 1 ) = 0 

where A is constant. Spline S(x) and its first and second derivative is 

continuous at point A., so 
J 3 

-2(bj-bj_ 1)=6A.j(aj-aj_ 1 ), A.j(bj-bj_ 1)=-(cJ-cj_
1
), ->..j(aj-aj_ 1)=d(dj_ 1. 

It follows that hypothesis of equality of correstonding coeficiEnts of 

polynomials Pj_
1

(x) and Pj(x) are accepted at level a. 

Theorem 1. Let there exists at most one statisticaly not significant 

knot>... between two statisticaly significant knots of spline S(x). 
J 

Function S(x) where S(x) = P. 1 (x) for X E. 'A. 1 ,I. 1] and S(x) = s:~x) r LAJ_ J+ 
otherwise is statistical equivalEnt of spline S(x) at level a. 

Proof. We know that 
3 2 2 3 

Pj-l (A.j+ 1)-Pj+1 (>..j+ 1) (A.j+ 1-3A.j+ 1>../3A.j>..j+ 1->..j) (aj-aj_ 1), 

2 2 
Pj_ 1 (>..j+ 1)-Pj+ 1 (A.j+1) (3A.j+ 1-6>..j>..j+1+3A.j) (a(aj_ 1), 

P. 
1 

(>..,+ 1)- P. 1 (>... 1) = (6>...+ 1-6>...)(aj-a. 
1
). 

J- J 'J + J + J J J-
So statement follows from Lena 1. 

Theorem 2. Let A.={>..., i=O, ... ,g.} is set of knots of splineS (x) j=1,2. 
J I J g j 

1 f g 1 > g2 and A 1 2 A2 then : 

(6) F = 

From F /o 2 ~ v 2 
4

, 
g1 ''111-g1-

F /o 2 ~ x2 and F /o 2 > F /o 2 

92 m-g2-4' 92 91 
Proof. 

it.~fnllows that F /o2 
- F /o 2 

92 91 
~x 2 

_ [6]. According to fisher-Cohran 
91 92 

theorem it follows that F /o 2
-

91 
that (6) is true. 

F /o2 and F /o 2 are indi pEndEnt and 
g2 g1 

Theorem 2. can be used to estimate the upper limit of increasing 

of the sum of squares of residuals of the spline finction with smaler 

number of knots, whEn positions of knots is not changed. For prescribed 



eve! of significanceavalueFacan be found such that 

P{O < F< F } = 1-a. a 
hEll 

0 <- F - F < F F 
92 g 1 a g 1 
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Al PROXUJATION IN DISCRETE CONVEXITY CONES 

Ivan B. Lackovic , Ljubisa M. Kocic 

ABSTRACT: 
'rhe necessary and sufficient conditions for positivity of linear 
continuous operators on a cone of convex sequences are given. The 
mai~ ~heor~m is base~ on ~he representation of every s~quence as 
a l1m1th (ln d metr1c, g1ven by (2)) of sequences uCn; given by 
(6). This is asdiscrete analogue of the result given in [2J, and 
a generalization of result from [ 1 J. 

APROKSHJACIJE U DTSKRETNHl KONUSI!"JA KONVEKSNOSTI. Do bij eni su pc..
trebni i d{)voljni uslovi za pozi ti vnost linearnih neprekidnih o
perators na konusu konveksnih nizova. Teorema se bazira na repre
zentaciji svakog niza kao ~ranice (u metrici ds , koja je data sa 
(2)) nizova u\nJ datih sa (6). JJobijeni rezultati predstavljaju 
diskretnu analogiju rezultata iz [ 2 ]~ i generaliBu rezultate iz 
[ l L 

1. ALGEBRA 

In this paper, the following denotations will be used: N = 
{1, 2, 3, ••• ~, N

0
= Nuto\, x=(x

0
,x1,. •. ) =(xk)(krN

0
), 

S -the set of all sequences x. Further, the sequences en r S 

(n r N
0

) is defined by 

( 1) en = ( 6 nk) (kEN 0 ) , f o, k;l n , 
where onk is Kronecker's. delta, onk = l l, k= n. • For two 

sequences x,y r s we write· x = y if xk = yk for every k£N0 , 

and x + y = (xk + yk)(krN
0
), If ~rR then AX means (Axk) 

(k£N )~ Thus, S together with defined operations consist a li-
o 

near space over the field R, with the sequences en(n£N0 ) as 

a base. 
The sequence x = (xk) (krN

0
) is convex if ll

2
xn = xn+2 -

2x + x ~ 0 (nrN ). The set of all convex sequences will be 
n+l n o 

denoted by K. It is known, that K is a cone in s. 
Further, let De R be a nonempty set. With F(D) we will 

denote the set of all functions f: D-+ R. For the operator A: 
s...,. F(D) we say that it is linear if for every x,yES and 
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~, 
1

urH ti1e equality A(/,x + 1uy) = A.Ax + ;nAy, holds. 
If for XES and f EF(D) 

X 

fx(t) ~ 0, for every 

we have fx =Ax, then we write 

t r D. Similarly, Ax = 0 if 

for every tED. 

2. TOPOWGY 

Let x = (xk) and y = (yk) 
d (x,y) be a distance between x s 

be two sequences from s, and 

and y, introduced with 

(2) 
+oo 

L: 
k=o 

2
-k \xk- Yk\ 

i + \Xk- Yk\ 

Now, (S~ds) is a metric space with finite metric: ds(x,y)~ +oo, 

for every x,yrS. The sequence x(n)£ S converges to XES in 

metric d if d(x(n), x) -+ 0 when n ...,.. oo • Then we write 
x(n)~ xs, or lim x(n) x in metric ds , and say that x 

a d - limit s 

n 
for x(n). 

Now we have: 

Lemma l. Every sequence u = (uk) (kEN ) from S is 
of the sequences u(n) (n£N

0
) havin~ the form 

(3) 

Proof, We have 

a d -limi1 s 

+00 . 
f L: 2-l 2-n , wherefrom 

i=n+l 

d8 (u(n~ u) -+0 when n -'>OO. Consequently, 

+OO 
L: ukel 

k=O c 
(in 

for every UES. 

3. REPRES~NTATIONS 

From the lemma l we have that the representation 

+oo 
(4-) 

d - metric ) s 
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1o_tc.u:; for every u = (uk) cS . However, we need the followine; sta
;ement concerning representations. 

Let the sequences E
0

,E1 and Wk be defined with 

+OO +00 
(5) E = l: e1 , 

0 k=O c 
Vl1 = l: (i-k-l)e. (k£N

0
) • 

c i=k+2 1. 

Now, we have 

Theorem L (a) Every sequence of the form 

(6) 
(n) 

u = 

where "A (n), 1u(n) £ R, c~n) ~ 0 (kEN
0

) f'or fixed n, is con
vex, i.e. depands to the cone K. 

sequences 
(b) Every sequence UEK is a limit (in ds metric) of 
u(n) given by (6). 

Proof. (a) It is obvious that E
0
=(l,l,l, ••• ) and E1 = 

(0,1,2,3, ••• ), i.e. 6 2E
0

k = 6 2E1k = 0 (kEN
0
). From (5) we also 

have which gives 
0 6 i < k-2 

i ~ k-2 
2 i.e. 6 V/ki~ 0 for every i£N

0 

tivity of c~n) we have from (6) 

and k£N
0

• In virtue of nonnega-

62u(n)~ 0. Accordingly, u(n) is 

convex for every 

into (!.j.) 

(b) 

u = u 
0 

we have 

ncN • 
0 

Substituting the obvious identity 

k-2 
+ lffiu + l: (k-i-1) 6 2u. 

0 i~o 1 

(7) u 
+CO -k-2 2 

u
0

e
0 

+ u1e1 + l: (u + k6u + l: (k-i-1)6 u.) ek • 
k=2 ° 0 i=o 1 

After some transformations (7) get the form 

u = u ( 
0 

+00 +00 
E ek) + (6u

0
)( l: kek) 

k=o k=o 

+00 2 +00 
+ l: (6 u1 )( l: (i-k-l)ei), 

k=O C i=k+2 

which is a d -limit of the sequence s 



+00 
+ il u

0 
l:kek + 

k=o 

introduced by (5) u(n) 

have 
( J +OO -k \Uk-Vk\ 

d
5

(u n, u) E 2 2-n , for every fixed n, 
k=n+2 1+ \uk-v0 

wher€ 
n~oo 

vk (k l!:n+2) is k-th therm of u(n). So, d (u(n~u)~O 
i.e. u is a ds-limit of the sequences u(n) :iven by (6 

4. APPLICATIONS 

Using the theorem 1 we can obtain the following theorem 

<rheorem 2. Let the operator A:S 4 F(D) be linear and continu' 
over the sequences in S. Then, for every ue:S, the implication 

(8) u e:K ~ Au~ 0 

holds if and only if 

(9) A E = 
0 

A E1 = O, 

(10) A wk ;:: 0 (k£N
0

). 

Proof. i) Suppose that (8) holds for every U£S. Then, i 
we ~boose u=E

0
{u=E1) we have that ue:K which imply Au~O, i. 

AE0 ~ 0 (AE1~ 0). But -ue-K too. Thus, A(-E0 )~ 0 or A(-E1 );:: 0 
wherefrom AE

0 
=AE1= 0. B,y theorem 1-a Wke:K (krN

0
), so, in vi 

tue of (8) we have AWk~ 0 for every k~N0 • 

1 ii) Suppose now that (9) and (10) holds. Then, on 
the basis of theorem 1-b, every sequence ue-K is ds-limit of 
the sequence (u(n))(ne:N

0
) given by (6). This means that u = 

lim u (n), wherefrom, accordingly with continuity of A over t. 
n . 

sequences ~n S, we have 

Au A(limu(n)) 
n 

and, in virtue of linearity of A 
get 

lim(Au(n)), 
n 

over the sequences in S, we 

Au lim ( ~(n)(AE) + u(n)(AE) 
n o I 1 +k~oc~n)(AWk) J 

and, if (9) and (10) holds, and keeping in the mind that c~n)~ 



~e .unaly obtain A u~O 

~emark l. It is easy to see that our theorem 2 generalizes the 
~esul t of theorem 4 in [ l] • In this case an operator A have 

the .form -of triangular matrix. 

Remark 2. The representation (6) is a discrete analogue of the 
relation (6) in [ 2 J • 'l'he sequences Wk we can call a discrete 
splines. 
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APPROXIMATION OF CONVEX FUNCTIONS BY FIRST DEGREE SPLINES 

Ljubisa M. Koci6 

ABSTRACT: 

A method for ~pproximation of functions convex on a finite in
terval by picewise affine function is developed. For the seg
ments of approximating function we used the support affine fun
ction f in prescribed points, and its graph lies not up then 
the graph of f • 

APROKSH'IACIJA KONVEKSNIH FUNKCIJA SPLAJNOVIMA PRVOG STEPENA. 
U radu je razvijen metod aproksimacije konveksne funkcije, ueo 
po deo afinom funkcijom. Segmenti aproksimirajuce funkcije su 
potporne afine funkcije aproksimirane funkcije f u zadatim 
tackama, a njen g~afik lezi ne iznad grafika funkcije f • 

1. INTRODUCTION 

The problem of approximation of one variable function by 

first degree splines (picewise affine functions, polygonal lines) 

is minutely studied from many autors,and for classes CCa,bJ and 

c2 ca,bJ , as well as the interpolated classes H~ and WHw, 

see, for example. [ l J and [' 3 J • A lot of results are oriented t< 

applications on computers [7J. In all appearance, this kind of 

approximation is especially important for convex functions. Erly 

results was obtained by K. TODA ( 6 J and T. POPOVICIU [ 4 J. 

They were shown the following theorem: 

Theorem 1. The first degree spline function 

(l) (Sf)(x)=pX+q+ n 
x E [a, b] , n EN , 
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where p, q_ £ R, ck ~ 0, xk £ [a, bJ (k = 0, l, ••• , n) is convex on 

[a,bJ. Furthermore, every convex function, defined on (a,bl is 

the uniform limit of the seq_uence Snf of the form (1), whe-

re 

and 

Of course, the spline Snf interpolates f in the 

knoots xk (a, bJ, ana if we introduce for XI: [a, bJ 

(2) epif { (x, y) £ R2 y ~ f(x) } ' 
(3) hyp f { (x,y) 2 y ~ f(x) } ' = £R 

it is easy to see that (Snf) (x) £ epi f ' for n e: N, and xe-

[a, bJ. 

On the basis of theorem 1, P. M. VASIC and I. B. LAC

KOVIC vere proved an important theorem on the positivity of 

linear operators [8, p. 55 J. But, the attempt to formulate 

an analogue theorem for functions of two (or more) variables, 

'based on TODA - POPOVICIU type theorem shall not be successful 

'I'he reason is that the coefficients, corresponding to ck will 

not be nonnegative for convex function (x,y)-+ f(x,y). By the 

other words, a polygonal surface, inscribed in the graph of 

f(x,y), must not have a nonnegative coefficients. In this sense 

a polyhedral surface, circumscribed around f(x,y) will be 

much convinient. Thus, we shall develope this kind of approxi

mation for one variable function. Ttiis circumscribed spline wil 

be denoted by snf , because it is a kind of lower bound for f 

as Snf is a. kind of its upper bound. Also, (snf) (x) e: hyp f. 

2. PRELIMINARY LEr1AS 

Function f: Ca,bJ~R is convex on (a,b] if the inequa-

lity f('Au + (1- 'A)v) ~ M(u) + (1- 'A)f(v) holds for every u, v 
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ta, oJ and A. E: (0 9 l) • The function f is called strictly con

:lX if above inequality is strict. Let K(a, bJ and K+(a, bJ 

:lnote the cones of convex and strictly convex functions on 

:a, bJ , continuous from the left (right) at the edge point a 

:b). The function x- p(t,x) is called support function of con

rex function f if the following conditions are fulfiled : 

f(x) ~ p(t,x), x e:. [a,bJ , x ,lt and f(t) = p(t,t). 

'or strictly convex functions the following lemma takes place 

see for ex. [ 5l): 

,emma l. Let f: [a, bJ -+ R be strictly convex on [a, bJ, and let 

'(x) be the right derivative of f in x. Then 
+ 

a) f' is increasing function on [a,bJ , 
+ 

b) for every a ~ u < v ~ b holds 

f'(u) < f(v)- f(u) < f'(v). 
+ v - u + 

Let f £ K+ [a, bJ , and x 1 < x 2 ( ••• < xn be a set of knoots 

from (a,b). The first order spline, circumscribed around the 

graph of f is given by 

(4-) (s f)(x) = sup { p(xi'x) } , x e: [a, bJ , 
n l~i~n . 

where p(xi ,x) is affine sup,port function of f in the uoint x1 : 

(5) P(x.,x) = f(x.) + f'(x.)(x-x.) • D 
l l + l l 

So we have 

Lemma 2. a) sn f interpolates f in the knoots xl' • •. 'xn' 

b) sn f is convex on [a, bJ. 

Proof. a) Let 1~ k~ n be a fixed number. Then, sup {p(xi ,xk)} 
H:Hn 

p(xk,xk) = f(xk) which is an interrelate prOlJerty. 

b) As every function x r- p(xi'x) (i = 1, 2, •• q n) is 



28 

convex, so ~ p(xi, x) I H.Hn} is a family of convex functions. 

3ut, it is known ( [ 5 J) that sup p(xi,x) 
lH~n 

is also convex. 

Now, let xk and xk+l be two adjacent knoots. Corres-

podent support lines are p(xk,x) , p(xk+l'x). Note that the 

equation p(xk,x) = p(xk+l ,x) have a solution 

(6) 

l, 2, ••• , n-l) are the abscisses of vertex of the polygonal li 

ne which consists the graph of the spline sn(x). 

Lemma 3· If f e: K+ [a, bJ then the inequalities 

holds for every k = l, 2, ••• , n-1. 

) - f( 
Proof. From lemma 1- b) , we have that f:(xk) <. 

xk+l - xk 

i.e. from xk+l -xk> 0 follows (xk+l-xk)f:(xk)<f(xk+l) -f( 

wherefrom we get xk+lf:(xk+l) -xkf:(xk) +f(xk)- f(xk+l)< xk 

·(f:(xk+l) - f:(xk)) or tk< xk+l" In the similar way, from 

f(xk+l) - f(xk) < f:(xk+l)(xk+l -xk) we get f:(xk+l)xk+l -

f:(xk)xk + f(xk) - f(xk+l) > xkcr:cxk+l) - f:(xk)), i.e. tk> 

In the seqel, we introduce a v-shaped function 

vk(x) = sup/ p(xk,x) , p(xk+l'x) } , 

xk~x :s; xk+l 

w: 

which approximates f on [xk' xk+l J. Let ~ be defined wi ~ 

Ek = f - vk' and 11·11 be the sup norm. Then we have 

Lemma 4. 11~11 = f(tk) - vk(tk) , for every f e: K+ (a, bJ. 

Proof. On the basis of definition of E we have 

(8) E(x) "' ( f(x) - p(xk 1 x) , xe: [xk' tk), 
i f(x) - n(x, •• x). xr(t,_.x,_.,J. 
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We shall prove that E(x) monotonely increasing on (xk,tk). Let 

xk<x<y<tk. Then, we can f'ind "Ae:(O, 1) so·that x"' "Axk+ 

(1- "A)y, which, with strict convexity of the function f' gives 

(9) 

From (8), (5) and (9) we have E(x) = f(x) - f(xk) - f': (xk)(:x:-xk) 

"Af'(xk) + (1-"A)f(y)- f'(xk)- f'~(xk)(x-xk) =(1-1\)Cf(y)-f(xk)J 

- f ~ (xk)( "Axk + (1 - "A)y - xk) = (1- "A) tf(y) - f(xk) - f~ (xk)(y-xk)J 

= (1- "A)E(y) f'or x E [xk,tk)' which means that E(x) < E(y) , 

for xk < x < y < tk , in virtue of' inequality 0 <. "< 1. Thus, E is 

increasing on (xk,tk). 

In the quite similar wa:y one can prove that E is decrea

sing on [tk,xk+lJ. Being a continuous function, E(x) attains its 

maximal value in tk , i.e. ~ = sup { E(x)} = E(tk) = f(tk) 
[xk,xk+ll 

3. APPROXIMATION 

On the basis of previous lemmas ve can state 

Theorem 2. a) The spline sn have explicit f'orm 

n-1 
(10) (snf)(x) =Ax + B +I: dk(x-tk)+ , x e: (a 9 b] , 

. k=l 

where A=(T1-T
0
)/(t1-t

0
), B=(t1T

0
- t

0
T1 )/(t1-t

0
), Tk=p(xk;tk), 

dk = f~(xk+l) -f~(xk)' tk is given by (6) and t
0

= a. 

b) For every f e: K+ (a, bJ, ( snf') (x) approximates f 

uniformly on [a,bJ when n+oo 

~· If we put Tk=p(xk,tk)' then the vertex of the polygonal 

line (4) have coordinates (tk,Tk). This line, being a graph of 

the first degree spline have the form (10), where dk must be a 

difference between the slope of' the right support line, f~(xk+l) 

and the left one, f'~(xk). Of course 1 dk~O k=l, ••• ,n-1. The 



proof of b) follows from lemma 4. Namely, for xe:[xk,xk+lJ' we 

have jf(x)- vk(x)l ~ E(tk) = f(tk) -f(xk) -f~(xk)(tk-xk)' and 

i:f we put h=xk+l-xk, then lr(tk) -f'(xk)r~ w(f,h), and also 

tk- xk < h, wherefrom lf(x) - vk(x) I< w(f ,h) + h -+0, and according 

ly, f'(x) - sn (x) -0, WhE:Jn n-+ oo and m~x(xk+l- ~)-o • 

Sofar we deal only with strictly convex functions. What 
we have pointed out it is that no difficulties when we pass to 
convex functions. Namely, these subintervals of (a,bJ on which f 
is affine, must be excluded, and remainded graph will be a stri
ctly convex function. Now, we under-line that the form of the spl 
ne does not new. There is no difference, ·in formal sense, betwee 

Snf and snf. However, we have snf ~ f ~ Snf on (a, b], and n e: 

.!!'rom this reason, we call S f an upper spline and s f a low n n 
spline of the convex function f. There is, also, a middle spl 
ne, have been studying by r1. GAVRILOVIC in [ 2 J and provid 
the mini-max approximation. The spline Snf exists for every 
tinuous function. But, the middle and the lower spline do exis 
only for convex functions. 
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ON ~HE SPLINE SOLUTIONS 0~ BOUNDARY 

VALUE PROBLEMS OF THE SECOND ORDER 

Katarina Surla 

ABSTRACT: 

A tridiagonal difference scheme is developed for tb.e boun

dary value pPobZem (1). This scheme was derived by cubic 

spline aaaording toIl 'in [2]. The fitting factor of the 
2 ;-

2sh {h.Vq .. /2) 
form a, = · · 2 ~ ~ was used in order to e Ziminate the 

~ h igi 

condition h~q. <6. Ex>ror estimations- for the solution and 
~ ~-

it& derivatives are also given. In some oases these esti-

mations appeared to be optimal (Sa =0 ,h
0 

=Mh
2
). 

0 SPLAJN RE~ENJIMA KQNTURNIR PROBLEMA· DRUGOG REDA. Posma

tPana je tx>idiagonaZna difex>encma 8ema za konturni problem 

(1}. Bema je izvedena primenom kubnog spZajna prema [3]. 
u nameri da se eZimini8e uslov h.q~<6 uveden je fiting 

---~ ~-
2sh2

{h .V q
1

/2) 
faktor obZika a

1 
= 2 ~ • Ocene greske za Pesenje 

hiqi 
i izvode su date, U nekim sZuoajevima proaene su optimalne 

{[) =O,h. =Mh2). a o 

Consider the problem 

131 

; i; 



( 1) l
-y"+q(x)y =f(x), 

atay(a)+eay'(a) =ya 

ctby<b>+eby'<b> =rb 

g(x) _::o, x e [a,b], (a,b eiR), 

, lctal+leal ~o, 

, I ctb I + I Bb I ~ 0 • 

The approximate solution of the problem (1) we wont to ob

tain in the .form of the cubic spline v(x) ec 2 [a,b} on the 

grid 

a =x
0 

< x 1 < ••• :< x·n+1 =b 

The restriction v(x) on [x
1

,xi+
1

] is vi(x),vi(x) =v!o) + 

. ( l_) 1 ( 2) 1 ( 3) . 3 -
+ 'l.l"i (:x-x1> +2 v:i (x-x1) +2vi (x-x1 ) (i-0,1, ••• ,n) 

(k) (k) (k) 
where vi are constants which approximating y i = y (xi) • 

. ' Using th.e equations 
. (2) (o) 

-q·ivi +qivi =fi (i=O,l, ••• ,n) 

and the suppositions on the continuity we obtain 

(2) Lhvio) = k:i:~~: 1 +~ivio) -mivi~i = Ri, (i=0,1, ••• ,n) 



c = (1 -n 

c 
3abhn + 6f3b 

abhn + 36b ' 

m =0 
n 

(k) 
The consta,nts v 1 , k=1, 2, 3 we obtain from the relations 

a v(o) + 6 v< 1 > = Y~ 
a 0 a 0 a 

2 h2 2 
2fi-1 fi hi-lqi 

f3 =1 + 
i-1qi-l hi-1 

ai = 1 - 6 , 
3 I s. =--- (--- +-) q i 0 i-l J. 2 0 i-1 °i i 

h v(o) v(o) 
(1) (1) + n-1 ( qn :n + 

qn-1 n-1 
) vn v:n-1 r --- , n 2 o1 qn-1 

hn-1 f:n-1 f 
( :n 

rn -2- --+ 0n-1 0 
n 

-o (v( 2)+h v(J))+q ( v(o) + v( 1 )h +h2v( 2 )/2 + 
n+1 n n n n+1 n n n n n 

+ h 3v(J) /6) = f 
n n n+l 

Similar to [2] it can be shown that zlk) =ylk) -vlk) sa

tisfy the equations 

133 



( 3) 

(4) 

( 5) 

(6) 

01 

( 8) 

{9) 

h {o) (o) {o) (o) _ (. _ ) 
L z. =-k_.z, 

1 
+t.z. -m.z.+1 --1)J., ~-O, .•• ,n 

L ~ ~- 1 1 ~ 1 1 

(o) q. z ~o) 
Z

(l)_ z(l) +hi-1. (qi-lzi-1 + 1 :1. ) + A-.(1)~ 
- · 1 -2- 'I' • (i=1, .•• ,n) 

i 1- a i- 1 ai 1 

i=1, ••• ,n) 

- ( z ( 2 ) +h z ( 3 ) ) +q ( z { 0 ) +h z ( 1 ) 
an+~ n n n n+l n n n 

h3z (3) 

+ ...Jl...1L.. ) 
6 

+ 

THEOREM 1. 2 
Let 6a1-hi-lqi .:_o, aa8a 2_0, ab8b .:_0 

and at leats one of 

different from zero. 

nverse monotone. 

qk (k=i-l,i,i+l) (q_ 1=0) (i=O,l, ••• ,n) is 

Then the matrix of the system (2) is 

-COROLLARY 1. The condition 6cri-h~ 
1
q. >0 in theo

rem 1 we can be replaced by q. (h~-h~ 
1

) +6:1.~0.
1

-
1 ~ 1-



THEOREM 2. Let the boundary value problem (1) has 
4 

a unique solution y (x) e C [a,b]. Let conditions of theorem 1 

are fulfilled. 

Then for S ~0 the following holds a 

izt)l 2_Mh
2 

(k=O,ll2)1 izl
3

)!2_Mh 

and for sa= 0 

I z~k) I <Mh (k=O,l,2) 1 I z~ 3 ) I <M , where !4 denotes 
1 - 1 -

different constants, independent on h. 

(11) 

(12) 

Proof. 

(i=l 1 ••• ,n) 

b. 
0 

so<sl-~) 
--,-h-- - aa >Mh 

0 

From (10), (11) and (12) we obtain that II A-
1 1!.::_ rna~/':,.- .::_Mh-: 

A is matrix of the system {2) • 
i 1 

Since jai-11 .::_Mh
2 

we have !lJ!il =O(h
3

} and then 

lz{o) I .::_i!A-il!llJ!il 2_Mh2 

The estimates for ] z ~k) I (k=1, 2, 3) we obtain from relations 
1 

(4) -{9). 

THEOREM 3. 

ons of the theorem 1 

Jz~o) I <Mh3 ; 
1 -,-

Let hi =h=cons~, Ba =sb=O and the conditi

are fulfllled. Then 

Jzik)j .::_Mh
2

; jz_in I .::_Mh 1 (k=1,2) 

- -1 
Proof. A simple calculation shows that A >h B, 
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where A is matrix determined by {3) for i=l 2 ••• ,n, ~nd z~0 )=0, 
B = {bi.} (L, j=l 1 ••• ,n~ is tridiagonal matrix with b .. =2, 

J 11 

bi 11 =-1, (i=2, ... ,n), b .=-1 (i=1, ... 1 n-1). 
-I i+li<J. 

The solution of the system 



I I i (n+l-i) 
Bu =w, w=max 1/Ji h has the form ui = 2 w • Since 

I z l 0 ) I _::. u i we h! ve I z ~ 0 ) I _::. u 1 = 0 ( h 
3 

) , I z ~ 0 ) I _::. un = 0 ( h 
3

) • 

Then form (3) for i=2 we obtain z~0)=0(h 3 ) and then by in-

1 
(o) I 3 duction we can conclude that zi =O(h) (i=2, ••. ,n). The 

estimates for derivatives we get from (5)-(9). 

THEOREM 3. Let Ba=O and h =Mh
2 

Then 0 • 

lz~k) ~ <Mh
4
-k (k=O,l,2,3). 

~ -

Proof. See l4]. 
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MESH CONSTRUCTION FOR NUMERICAL SOLUTION 

OF A TYPE OF SINGULAR PERTURBATION PROBLE~qS 

Relja Vulanovic 

,BSTRACT: 

~e singular perturbation problem (1) is considered. It is 
·oZved numerically by classical difference schemes on a non
niform mesh. The discretization mesh is construced in a 
pecial way. which gives linear convergence uniform in small 
•erturbation parameter. 

KONSTRUKCIJA P.1REZE ZA NUMERICKO RESAVANJE 

JEDNOG TIPA SINGULARNIH PERTURBACIONIH PROBLEP.A 

posmatra se singularni perturbacioni problem (1) koji se re-
8ava numerioki pomodu klasianih diferencnih .8ema na neekvi
distantnoj mrezi. Mreza diskretizacije se konstrui8e na spe
cijalan naain. tako da se dobija linearna konvergenoija uni
formna po malom perturbaoionom parametru. 

1. INTRODUCTION 

We consider the two point boundary value problem 

(1a) Leu:= e 2u" +xb(x)u; -c(x)u =f(x), x €I = [0,1] 

(lb) u(O) =U
0

, u(l) =U
1

, 

with basic asumptions 

2 b,c,f €C (I) 

b(x) > 2(3 >0, c(x) ?_Y. >0, 2b(O) <c(O) , 

0 < £ 2 €0 • 

This problem was solved in [2] by a sp~cial method 

which gives linear convergence uniform in small perturba

tion parameter e:. Our method seems to be somewhat simpler. 

It is based on the idea of Bahvalov, [1], that was genera-
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lized in [3] and uses a special mesh construction. We also 

achieve linear convergence uniform in £ but with less con

straints - in [2] it was assumed: b,c,f ec 3
:{I), 3b{O)<c(O). 

Now we shall give some estimates for the derivatives 

of tp~ solution u£ ec4 {I) to the problem {1). We use the 

result from Theorem 2. from {2]. Each positive constant in

dependent of £ and of discretization mesh will be denoted 

by M. 

THEOREM 1. For the solution u£ to the problem (1) 

the following estimates hold: 

( 2) (i) -i' -i X 2 
lu (x) I <M(e +s exp(-13( -) )) , 

£ - £ 

i=0,1,2,3, 

where max (0, i-2). 

Proof. Using the same proof as in [2], we obtain 

( 3) I 
( i~ 1 -i . 2 u (x} <M{l +s exp(-h(x)/£ )) , i=0,1,2, 
£ -

X 

where h(x} f tb(t)dt. We use this inequality to get (2) 
0 

for i=0,1,2 This part of the proof needs the asumption 
4 

u£ ec (I) and 2b(O) <c(O). 

Let us now obtain the estimate (2) for i=3. Differen

tiating both sides of ( la) twice, we have 

s 2uiV + xb(x)u'" = g(x), 

where, according to (3): 

-2 2 
lg{x1j _:M{l +s exp(-h(x)/£ )). 

Now it follows 

2 ~ X 2 
u'"(x) = exp(-h(x)/£ >[u'N(O) +s J g(t)exp(h(t)/£ )dt]. 

0 

Since from [2] we have I u '" (0) I ..:::_Ms - 3 , we get: 

I u '' - (X) I..:::_M (A + B + c ) J 

with 

A 
-3 2 

£ exp(-h(x)/£ ) , 
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B 
2 X 2 

£- f exp((h(t)-h(x))/£ )dt 
0 

C £- 4x exp(-h(x)1£ 2) • 

Now we have 
-3 2 

A,C ~l-1£ exp(-8 (x/£) ) 

and, see [2], 

1 2 
B < £BY (1 - exp(-(3y ) ) , y =x/£ • 

Hence, 
B <ME - 1 

and the theorem is proved. 

2. THE MESH CONSTRUCTION 

Let us denote by q a fixed number, q e (0,1), indepen

dent of £ and take 0 <a <q/£
0

• Let for t e [O,q): 

<j>(t) = t/(q-t), l)J(t) = a£<j>(t). 

We have <j>(k) (t} >0, k=1,2 . The mesh points are given by 

where n e lN, n > 4/q, and 

A (t) = ·· 
t e !D , o: J 

Here (a 1 l)J(a)) denotes the contact point of the tangent line 

taking the value 1 at 1, to the curve l)J(t). Since we have 

a£ <q it follows l)J'(O) <1 and a e (O,q) uniquely exists. For 

a we can get: 

a = 
1/2 (q-(a£q(1-q+a£)) )/(l+a£) . 



10 

.. ote: The function A{ t) which we give here is one of the 

class of functions that was constructed in [31 for a diffe

rent type of problem, namely - the preblem (1) with b(x}=O. 

On this mesh we form the discretization of the prob

lem (1): 

where 

D'ui = (ui+1-ui)/hi+l' 

hi =xi-xi_1 , i=l,2, ••. ,n. 

3. CONVERGENCE UNIFORM IN e: 

Because of c(x) ~Y >0 we can easyly get that the sche

me (4) is stable uniformly in e:, see [3], for instance. 

Now we shall state our main result. 

THEOREM 2. For the solution u£ to the problem (1) 
and for the solution ui to (4) we have 

lu (x.)-u.l <M Ln'- i=O,l, •.• ,n. 
l. l. -

Probf. We only have to prove consistency uniform in 
e:, i.e. 

(5) lril <M ~, i=1,2, ... ,n-l, 

where 

ri = Lhue:(xi) -(Le:ue;)(xi~ 

Let vi =exp(-{3(xi/e:) 2). We have 



(6a) lril <M 
1 

(l+Pi+Qi), n 

with 

(6b) P. ;.. '(ti+l)i vi-1 , 
~ 

(6c) Qi ;.. (ti);.. '(ti+l) £ 
-2 

vi 

Another estimate for ri is 

(7) 
2 xi 

lril :s_M(£ +vi-1 +xi+£ vi) 

The proof now follo~Ts the same way as in [1] (see [3] 
as well). 

1° We first consider the case ti-l ~a. Then 

we have xi-l ~)..(a) =a£(j>(a) and 

2 2 
vi :s_vi-l :s_exp(-Sa <P (a)) 

Because of )..(t), ).. '(t) :s_M, t ei, we conclude 

Pi,Qi :s_M ' 

and (5) is proved in this case. 

2° Now let ti-l <a and ti_ 1 :s_q-·~ 

q-ti+l>l (q-t. 
1
). From (6b) wecanget -2 1.-

Pi :s_a <j>'(ti+l)vi-1 :5. 

Then ti+l < q and 

-2 2 ti-l )2) 
< M(q-ti-l) exp(-8a ( q-ti-l <M 

Similarly, from (6c) we have 

Q. <a
2

<j>(ti)<j>'(t.+1 )v. <M 
~- ~ ~-

and (6a) give us (5). 

3° The last case is 

4 
q -:n < ti-l <a. 

From this inequality it follows 

4 
q- a <n: 

and 
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(8) 

because 

q - (J. > ~-(-1-gl:g £ 

l+q 

Now xi_ 1 ·> ae:cp (q -~ } , (notice q - * > 0), and we get 

(9) < M l vi-1 n 

Similarly: 

( 1 0) Xi v . < MV;- < M l 
e: J.- J. n 

For xi we have 

xi /.. (ti) .::_;..(ti-l) +M * 
and 

/..(ti-1) </..(a) <M/£, 

hence, using (8) we get 

(11) X. <M .!_ 
J. n 

Now from (7-11) it follows (5) and the theorem is. proved. 
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AN ITERATIVE SOLUTION OF SOME DISCRETE 

ANALOGUES OF A MILDLY NONLINEAR BOUNDARY VALUE 

PROBLEM 

Dragoslav Herceg, Ljiljana Cvetkovid 

.BSTRACT: 

n this paper we consider numerical solution of the system of 

,.on linear equations A (x)x=BFx by the iteration x 0 e IRn ,xk+1 = 
k -1 k . =A (x ) BFx , k=0,1, ... . We apply our ma1-n result on some 

discrete analogues of a mikiJu nonlineqr boundary 'problem, which 
are given in [1]. The results of [2] and· [3] are the special 
cases of ours. 

ITERATIVNO RESAVANJE NEKIH DISKRETNIH ANALOGONA BLAGO NELI
NEARNIH KONTURNIH PROBLEMA. U radu se posmatra numericko re
savanje nelinearnog sistema jednaaina A(x)x=BFx iterativnim 

o n k+1 k -1 k v postupkom X elR, x =A(x) BFx, k=0,1,2, .... Nas glav-
ni rezultat primenjujemo na neke diskretne analo~one blago 
nelinearnog konturnog problema koji su dati u [1J. Rezultati 
iz [2] i [3] Eiadrzani su u nasem kao posebni sluaajevi. 

l, ;I:NT:RODUCT!ON 

We shall consider a system of nonlinear equations 

(I) A(x)x = BFx, 

\'There A (x) , Be JRn, n (= set of all rum real matrices) and 

where F is the nonlinear mapping of JRn into itself. 

The i-th equation of (I) reads 

n 
/, 

j=l 
(A(x)) .. x. 

~J J 

n 

/. BiJ' (Fx) J' • 
j=l 
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We abreviate this as 

((A(x)) . 1 , ... , (A(x)) .. 1 ••• , (A(x)) in)= 
l. J.l. 

= (Bil'''' 18ii'''"'Ein) ' 

where we shall leave out zero entries and where we shall wri

te common factors of the entries of the respective matrices 

in front of the prentheses. The diagonal elements are under

lined. 
The iteration which we shall consider for the soluti-· 

on of (1) is 

(2) 
o n 

X € JR 1 

If A(x) is regular matrix for all x e IRn, the Jteration (2) 

can be \'lri ten in the from 

~1here Tx = (A (x)) - 1 BFx. 

In next section we shall prove under certain assump-· 

tions on A(x), Band F that Tis contractive. Then the conver

gence of (3) follows from a well-known contraction-mapping 

theorem. 

We apply our theorem to some discrete analogues of a 

miilldly nonlinear boundary value .problem of the form (4). 

These schemes occur frequently in the literature, see [1]. 

The special case of our theorem for the schem (5) was con

sidered in [2] and [3] . The assumption in [3] was stronger 

than the one in [2] . 
-1 

For any step wd.dth h = (n-1) , n > 2 1 n e lN 1 we defi-

ne the grid Ih = {ti = ( i-1) h: i=1, 2, •• , , n}. For the numeri

cal solution of rroblem 

(4) -u"+q(u)u = f(t,u), te [0,1] 

u(O) =u(l) =0, 

we f@rm the next discrete analogues of form (1). Let F is the 

nonlinear mapping of IRn into itself \'Thich assigns to x e IRn 

the element FX e JRn whose i-th component is given via 

(Fx)i 

The matrices A(x) and B are defined by 



[5) 
-2 2 h (-1 12+h q{x.) 1-1) 

___ _::_....!._ ~1) for i=2 13 1 .•. 1n-1 1 (second 

)rder approximation) 1 

h- 2 2 
(6) T:f (1~-16 1 30+12h q(xi) 1 -1611)={~) 1 for i=3 1 4 1 ••• ,n-2 1 

(fourth order approximation) 1 and second order approximation 

tor i=2,n-1 as in (5), 

(7) 
h-2 ~ 

180 (-2,27,-270,490+180h~q(xi) 1 -270 1 27 1 -2)=(~) for i=;4 1 

5 1 ••• 1 n-3 1 (sixth crder approximation) 1 and fourth order ap

proximation for i=3 1n-2 as in (6) 1 

and a fourth order unsymmetric approximation 

h - 2 2 
T:f (-10,15+12h q(xi) ,4,-14 16 1-1)=(_!) for i=2, 

h- 2 2 
l2 (-1 16,-14,4,15+12h q(xi) ,-10)=(_!) for i=n-1. 

In (5), (6) and (7) we have (1)=(_Q) for i=1,n. 
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T n 
The solution x = [x

1
,x 2 , •.. ,xn] e JR of (1) is the nu-

merical solution of the boundary value problem (4), i.e. 

xi:tu(ti), i=1,2, ... ,n. 

THE CONVERGENCE ANALYSIS 

Theorem. Let A (x) "' [a .. (x) J e JRn 1 n is inverse-mono. ~J 
tone matrix for all x € ]Rn and let BF is Frechet-·differentJo.ble 

in JRn. Suppose that 

1*en the equation (1} has a unique solution and the sequence 
0 1 2 

x ,x ,x , ... , generated by (3) converges to this solution. 

Proof. We shall prove that IJ T '(x) Jl co < 1, where 

T'(x) is Frechet derivative of Tx=A(x)-
1

BFx. Let C(x) = 
[c .. {x)] '"'A{x)-

1 
and let y e JRn. From [3] we have 

~] . 

T' (y) = (C (x) BFy) '(y) + C (y) (BF) '(y). 
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Since II C(y) II""_: a:, !! (BF) '(y) lloo.2. ~1 1 it follows 

II c ( y) ( BF) ' ( y) II 00 ..:. 0: M 1 . 

a a .. 
(C(x)BFy) '(y), H = la·xD _16 JRn,n, p=1,2, ... ,n. 

p p 

Then 

n a cik (y) n _ 
g {J' = l ---;;-x---(BFy) k = l (C HJ. C) ik (BFy) k- (C HJ. CBFy) i . 

.._ k=1 ° j k=1 

Since C(y)..::.o, it follows 

n n 
max l I g .. I < max /, ( C I H j I C I BFy I ) i = 

1_:i_:n j=1 ~J - 1_:i_:n j=1 _ _ 

n n 
max (C /, jH.jC~BFylli =II C( /, IH.[):jBFyl lloo < 

1<i<n j=l J j=1 J 

n 

llcJioo lljL
1

1Hj I lloollclloo II BFylloo 
2 

< 0: ~1 • 
0 

Now we have 

2 II T'(y) llco .2. o: ~1Mo + o:Ml < 1 

Theorem is proved. 

APPLICATION TO THE PROBLEM (4) 

We apply our theorem en discrete analogues for (4), 

which are defined by (5), (-5) and (7}. First we summarize some 

properties of the matrices A(x) and B=diag(0,1, ... ,1,0) as 

defined by the schemes (5)-(7). The functions g(t) and f(t,u) 

are assumed to satisfy the conditions 

1 1 
~_ g 6 C (JR) 1 f 6 C (I X JR) 

Jg'(t) I< IYI, .te JR, jf(t,u) l_~r-10 , I~~- (t,u) I _:~11 , (t,u) e I x JR 

( 8) -2 
-A< IJ_:q(t) _:h q+' t e JR, 

for some real IJ, where A and q+· clepend upon the scheme as 

follows. Let A
0 

is the matrix A(x) for g(t) =o, teJR. Then 

A(x) =A
0

+Q(x), where A
0

eJRn,n is independent of x and Q(x)"' 

= diag (G,q(x 2 l , ... ,q(xn_1 ) ,0). The matrix A
0 

is inverse-mono

tone, [1], and there exists the smallest positive eigenvalue 

A to the eigenvalue problem A x = \ B x. From ;1 J we have that 
0 



+ D is inverse-monotone for any 
) 

diagonal matrix D whose 

.agonal elements are all in (-:\, -2 J h q+ • Next table schov'S a 
-2 -

t+ of this type where q+ = oo means that (-:\, u q+J = (-:\,"'). 

Scheme (5) (6) (7) 

q+ 00 3 1/18 

ow, from (8) follows that A(x) is inverse-monotone and 

O<A(x)-1 <(A +lJB)- 1 for 
- - 0 

II A(X) -
1

lloo < C1. ' 

here 

a = II (A + lJB) -
1 II 

0 00 

epends on the scheme. Since 

n n <laik 
max /. /, l-ax (x) I = max 

1<i<n k=1 j=1 j 1<i<n 

<la .. 
1-u(x)[ 

()Xi 

e JRn X I 

max 
l<i<n 

I q '(x . ) I < M , 
~ -

the assumptions of our theorem are satisfied. Then for any of 

the schemes (5)-(7) there exists the unique solution and the 
0 1 2 

sequence x ,x ,x , ... generated by (3) converges to this so-

lution. 

For any of the schemes (5)- (7) we have A (h) <A 1 r11 I 

where 
2 

:\ ( 0) = IT , 
-·2 :\(h) = 2h (1-cosJTh), h > 0. 

This implies that -:\ < ll is satisfied if ll > -:\ (h) Now we can 

give easily computed estimates for h > 0 such that the condi-

tion jJ>-:\(h) holds true for the sch~es (5)-(7) if and only if 

\.1 > -rr 2
• We note that :\(h) is monotone decreasing as a func

tion of hand that :\(h)_~8 for heJo,O.Sl. So, if lJ>-8, we 

have \.1 > -:\(h) for all he I 0, 0. 51 . The restriction on h are 

described by 
-2 

-:\(h) < ll.::. h q+ 

The computable bounds of li(A + ]JB) -lli are given in Ill. So 0 'I CO 

we have 

where 

II (Ao + \.1 B) -1 II < { 
1/8-1 

d-jJ 

for \.1 =0 

. 2 
for- n < \.1 < 0, 
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-1 2 
d=(lJcos(0.5i3)) , O<i3<II, 11h =2(1-cosi3h) 

Now we can easyly see that the condition a 
2

MM
0 

+ aM1 < 1 

reduces to the case when a= l/8 for 11 = 0 and a= d- 11-1 for 
2 

-II <11<0. 
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ONE WAY OF DISCRETIZATION OF CHAPLYGIN'S METHOD 

Dusan D. Tosic 

BSTRACT: 
~aplygin's method ( described in [1] and [3] ) is an ana
rtic and iterative method for two-sided approximation to 
~e solution of ordinary differential equations. This meth
i is difficult for practical applications in analytic form. 
~ this work one :wa:y of discretization of Chaplygin' s me
~od is proposed. Chap11ygin's approximations are calcula-
3d by using the interpolation and the numerical integrati-
1. Some examples with the cubic spline interpolation and 
lmpson's rule are presented. 

~AN NACIN DISKRETIZACIJE CAPLIGINOVE METODE. Capliginova 
_3toda ( opisana u [1] i [3] ) je analiticka i iterativna 
metoda za dvo-stranu aproksimaciju resenja obicnih difere
ncijalnih jednacina. Ova metoda je teska za prakticne pri
mene u analitickoj formi. U ovom radu pred1ozen 'je jedan 
nacin diskretizacije Capliginove metodee capliginove apro
ksimacije se izracunavaju koris6enjem interpolacije i nume
ricke integracije. Navedeni su primeri sa interpolacijom 
pomo6u kubnih splajnova i integracijom pomo6u Simpsonovog 
pravila. 

1. INTRODUCTTION 

Let us consider the initial value problem: 

(1) y' = f(x,y), y(a) = y
0 

e 
We seek the solution y(x) of (1) on the discrete point set 
Gh = { xi I xi = a + ih, i=o,. ~. ,n, b-.a = nh } .. Suppose 
that the sol•ttion of (l) exists and that the conditions for 
the application of Chaplygin's method are satisfied ( see 
[1] ). If we denote by uk(x) and vk(x) upper and lower bo
unding Chaplygin's approximations order k, it holds ( [1] ): 

(2) max I uk(x) - vk(x)l < ~ 9 ( C E R+ ) • 
XE~t~ 2 

In [4] and [6] some shortcomings and problems related to 
Chapligin's method are pointed out. However, if the discre
tization of Chaplygin's method is made successfully, there 
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_ . .re some of cases where this method may be useful ( [ 5] ) • 
For example, the error estimating in some of numerical me
thods for (1), may be based on Chaplye;in's method. 

( 3) 

(4) 

and 

2. DISCRETIZATION 

If we introduce the following notation: 
o f(x, uk(x)) 

'dY 
f(x,vk(x))-f(x,uk(x)) 

= -
· vk(x)-uk(x) 

(5) I(a(x),b(x)) exp(-f a(t)dt) ( y
0 

+ f (f(t 9 b(t)) + 
Xo t Xo 

then we have: 

a(t)b(t))exp( J a(z)dz)dt), 
Xo 

(6) 

(7) 

uk+ 1 (x) = I(pk(x), uk( x)) 

vk+l(x) = I(qk(x),vk(x)) * 

The arising problem is to discretize the expression 
(5). Suppose that the values uk(xi) and vk(xi), ( xi E. Gh) 
are known. Performing the interpolation of functions uk(x) 
and vk(x) on the interval [a 9 b] we get the polynomials 
Pu (x) and Pv (x). By using Pu (x) and Pv (x) we can calcu-

k k k k 
late uk(x) and vk(x) vtith some accuracy, for each xe.[a, b] .. 
This possibility allows using the numerous formulas for 
the numerical integration in (5). We want to know the tru
ncation error made when the expression (5) is calculated.~he 
following theorem is related to this problem. 

THEOREM. If it holds: 
(a) the values of the functions a(x) and b(x) in (5) are 

calculated with accuracy not lesser than O(he), ash~ o, 
(b) each integral in (5) is calculated with the truncation 

error not greater than O(hs), ash~ 0 9 

then the expression I(a(x),b(x)) may be calculated on the 
set Gh with the accuracy O(hr), where r=min(e,s). 

PROOF For xi E Gh ( i = 1, ••• ,n ) we have: 

(B) ~ia(t)dt = S~ + R1 + R2 
xo 



wuvkJ R1 is the roundoff error and R~ is the truncation 

error of mu~erical integration. According to (b) we have: 

(9) ~1a(x)dx = S~ + O(hr) 
xo 

where r = min(e,s). From (9) we get: 
x. 

(10) exp(- j\~.(x)dx)= ch + O(hr), as h ~o. 
0 

Let be: 

(11) g(x) = (f(x,b(x))+a(x)b(x))exp( ~ a(t)dt ). 
Xo 

For the expression (5) we may 1r1rite: 
X X 

(12) I(a(x),b(x)) = exp(- J a(t)dt )( y
0 

+ j g(t)dt ). 
xo xo 

By using (10) and (11) (for xie.Gh) we get: 

g(xj) = ( f(xj 9b(xj)) + a(xj)b(xj))( C~ + O(hr)) 

and according to (a): 

g(xJ.) = gh + O(hr). 
j 

Now we obtain ( like as in (9) ): 

(13) g(x)dx 

s~ + O(hr). 

Finally from (12), (10) and (l3) it foll0111s that: 

(H) I(a(x
1
.<),b(x;)) = Chy + chsh + O(hr) 

.... 0. 2 

= Ih ;- O(hr) 

for xi e Gh, as h ~ 0 and the theor.em is proved. 

DenotinG by u~i and v~i discrete Chu.plyr-:in' s nn-oro

ximations in the point xi~ Gn_, from (6), (7) and (14) we 

have: 
u~i + O(hr) ( 15) uk(xi) = 

(16) vk(xi) "' {i + O(hr) 

for k-th iteration. By using (2) ' (15) and (16) we make 

the following estimation: 

h 11 I I uk(xi)-vk(xi)l < I uld -vl~i 
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... """' error estimation for the solution y(x) of (1) is based 
on the inequalities: 

(17) uk(x) < y(x) < vk(x) 
where x E [a,b] and k=O,l,. •• 

3. NU!I'JERICAL EXAMPLES 

In the following examples we apply the results of the 
previous section. As polinomial PUk(x) ( i.e. PVk(x) ) a 
cubic spline is used. Thus, the functions from (5) are ca
lculated with the accuracy O(h4) ( see [2] ). We use Sim
pson's rule for numerical integration. Therefore, R1 = R2 = 

O(h4) in (8) and (13). 

EXAMPLE 1. It is intended to solve the initial value 
problem 
(18) y' = y2 - ysinx + cosx, y(O) = o, 
by the previous method, using a steplength h=O.l on the 
interval [0,1] • As the initial approximations we choose 

u (x.) = sinx. - o.Oli 
0 ~ ~ (i = 0,1, ••• ,10) 

v
0
(xi) = sinxi + o.Oli. 

(Similar results are obtained for u
0
(xi) = sinxi - O.li and 

v
0

(xi) = sinxi + O.li, i = 0,1, ••• ,10.) The results are pre
sented in the table 1. 

Table 1 

v1i -h -h 
u2i v2i 

0.09983686 0.09983352 0.09983291 
0.,2 0.19864265 0.19869641 0.19866954 0.19866895 
0.3 0.29542913 0.29561211 0.,29552049 0.29551989 
0.4 0.38919984 0.38963886 0.38941868 0.38941806 
0.5 0.47899265 0.47986)51 o.479Li-2589 0.47942527 
0.6 0.56388187 0.56541504 0.56464278 0.56464220 
0.7 0,.64298689 0.64547439 0.64421786 o·.644217L~4 

0.8 0.71547964 0.71928375 0.71735594 0.71735601 
0.9 0.78059514 0.78615534 0.78332613 0.78332729 
1.0 0.83762731 0 • 845L~7896 o.8LJ-146881 0.84147252 

The theoretical solution of (18) is y(x)=sinx. The 
numerical results in table 1 are according to the theo-
retica1 consideration in the section 2. 



EXA.NPLE 2. Cosider the initial value problem: 
:19) y' = x2 + y2 -32.1 , y(O) = 0.1, 
m the interval [0,1] • Let be: 

~ = {xi 1 xi= 0.2i, i=0,. •• ,5}. 

As the initial approximations we take: 
u0 (xi) = -2 
v0 (xi) = -6. ( i=l,. •• ,5) 
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In the table 2 the numerical results obtained in 5 iterations 
are presented. We give, also, results obtained by the 
method Runge-Kutta with the truncation error O(h5). 

Table 2 

xi 
-h 
u5i 

-h 
v5i Runge-Kutta 

0.2 -4.,6109031 -4.6105720 -4.39460 ••• 
0.4 -5.5755214 -5 .. 5754871 -5.11619 ••• 
0.6 -5.6738443 -5.6738269 -5.39515 ••• 
0.8 -5.6625736 -5.6625541 -5.50713 ... 
1.0 -5.6339439 -5.6339192 -5.53980 ••• 

The numerical results presented in this paper ( and 
a lot of others numerical results ) are obtained on the mi-
crocomputer COMODORE 64. 
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ON A COITVERGE.NCE OF THE DIFFERENCE SCHEMES 

FOR THE EQUATION OF VIBRATING STRING 

Bosko s. Jovanovic , Lav D. Ivanovic 

ABSTRACT: 

In this note we inspect the convergence of the difference 
schemes for the equation of vibrating string, for the case 
\•Then a generalized solution of the homogeneous boundary va
lue problem belongs to a Sobolev-Slobodetsky space. The re
sults for the elliptic and parabolic case are presented in 
[2, 3] • 

0 KONVERGENCIJI DIFERENCIJSliTH SHENA ZA JEDNACilru ZICE KOJ A 
TREPERI. U radu se ispituje konvergencija diferencijskih 
shema za jednacinu zice koja treperi, u slucaju lead e;enera
lisano resenje konturnog problema pripada prostoru Sobolje
va-Slobodeckog. Analogni rezultati za elipticki i paraboli
cki slucaj dobijeni su u [2' 3] • 

vle wiil consider the first mixed hoElogeneous bounda

ry value problem for the equation of vibrating string: 

i'l
2

u iu + f(x,t) (x,t) E Q = (O,l) x (O,T) , 

at2 "J} 
(l) u(O,t) u(l,t) = 0 t E (O,T] 

u(x10) = dU(x,O) = 0 X € [0,1] 
dt 

Throught the note we will assume that the generalized solu

tion of (1) belongs to a Sobolev-Slobodetsky space VJ~(Q) , 

1 :$ s ~ 4- , [ 4-]. For such solutions one can construct a li

near extension for t <. 0 remaining in the same class [ 4] . 
By ll • II s,Q we will denote the norm and by j . 1 s,Q the 

senior seminorm in W~(Q) • 

define 

In the 

Pick a nonnegative 

a uniform grid wh 

same way we define 

integer n and let h = 1/n. ':!e 

with the step h over (0, 1). 

a uniform grid W't" wi-th the step 
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'C" == T/(m+0.5) over (-0.5't',T] 
Ue vrill assume that c 1 h ~ 't" o::: c2 h , c 1 , c 2 == const > 0 

If v is a function defined over Qh'!:' by vj v1e vJill de11ote 

restriction for t == (j-0.5)"t'. its 
1;Je introduce the difference operators vx, vx' vt 

in the standard way [6] • By II · II h and (., • )h we and V:t; 
will denote the difference analogs of the norm and scalar 

product over L2(o,l) . In the space of discrete functions, 

which are definecl over Wh and which are equal to zero o

ver the boundary )_mots the operator: 

1\v==-vxx 

is selfadjoint and positive defin;L te. Therefore the norm 

\lvll A-1 == (1\-lv, v)~/2 

can be defined. Also the norms over Q \"Till be: h't' 

Due to the fact that f(x,t) need not to be continu

ous, it seems natural to approxiE1ate f(x,t) by some mean 

values over Qh't". Let T be Steklov' s mollifier defined by: 

0.5 

T g(x) J g(x + h x') clx' 

-0.5 

e.nd T 0 g(x) == g(x) Tk g(x) == T(Tk-l g(x)) k==l,2, ••• 

By Tk,r 'de will clenote the product of Tk over x, llil.cl IJ.'r 

over t . 

Then v/8 \'Till ap~;roximate ( 1) b;y a weighted cl_ifferG:cl-
ce scheEle (a == const > o) : 

vt~:-t == a vj+l --'-- (1- 2 a I vj_ - -o vj:l .L rr_2,2 ""j xX I .. XX -.- ~...-~ x:x: r - .L 

(2) 
0 for X==O and X==l 

v 0 v 1 0 

'Jhon. u E. 1iJ~(Q) 2 4 
6 ' ~ ::: ~ , Ne will clenote z == 

u - v • Function z is v!ell ·defined over Qh't" .s .. tief;;rilJ.t;: 



zi-t- = a zj-:J-_1 + (l- 2 a) zj_ + a zxj-x:_l + <fxqx_ + ~~x-:: J 
v XX · XX -

0 for X=O and X= l ' 

z 0 u(x,-0.5't"), 

z1 u(x, 0.5 "!:), 

Hhere 

Hhen 

T
2

' 0 u- v 

on u(x,t) 

u e W~(Q) , l ~ s ' 3 , we will denote ~ 
Furthermore, we will assmne that the soluti

can be extended outside Q so that tho ex'censio"1 

is odd over x, and remaining in the same class. The functi·-· 

on ~ is defined over the grid Qh'l: satisfying: 

zj = a ~j!.l + .(l-2 a) zj_ + a zj:l "j 
tl; XX XX XX + <fxx ' 

0 for x = 0 and X= l' 

T2 ' 0 u(x, -0.5 'C'), 

Hhere 

q.j = T0 ' 2 uj - T2 ' 0 [a uj+l + (l-2 a) uj +a 11j-l J. 
Using the method of energy inequalities [6] one cc.~l 

prove the follov1ing a priori estimates: 
m 
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(3) llzll~;~,h ~ C [!iz~llh +II zJ~ + z~ll h + 'C L C ll<f~;:xll h -,-II <Jl.~tll h;J 
j=l 

CL:-) llzii~~.L,h~c (nz~H/\-1 +llzo+z.
1

1lh+ 'C'tll<f~llh) 
J=l 

Cehe conver;y:mce rate estimates in this note o.rG ·x>.

o,_:L ·:~;w follor,.rinc generalization of tho Brm.1blo-Hi}_::-, 3rt 

LU1l\1A: Let [sr be a nolme::;ative integer, [sr < s :::; 
+ l and let P [sr be t~10 set of pol3rnonio.ls of 

c-.1-.::.l over 
,:; [sr. If 

\1~(0) c.. • 

'1 = '1 (u) is a bounded, linear functi-

such that P [sr c: Kernel( ry ) , then fo:;:o 



every u. E \v~(Q) the follOi'ling inequalit;y is vulic<.: 

l1(u)l ~ C luls,Q C = C(Q,s) = conct • 

The proof of lemma follo\·JS from the Dupont-Scott 

theoreme [l]. 
0 

Functionals w .~, - .zt and Txx ' '~'tt ' 

unded and linear over vl~(Q) for s > 2 

(z~ + z~) are bo

while P
3 

c 

cKernel(<pxX), P
3 

c Kernel('l'tt), P2 c Kernel(z.~), 

P2 c Kernel(z~ + z~) • Using the lemma one obtains the fol

lowing estimates: 

m 

(5) "rL Cll<f~xllh + ll'~'~tllh) ~c hs-
2 

luls,Q, 2<s~4 
j=l 

(6) Uz.~llh + llz~+z~llh ~ C hs-l.51uls,Q<t:, 2-<s~3, 

where Q'L"= (0,1) x( -0.5 '"C", 0.5"1:'). Using (3),(5),(6) and 

(7) I ulk,Q'" ~ C F(h,a) II ull k+a,Q k=O,l,2, ••• , 

where 
0 ::; a < 0.5 , 

F(h,a) a = 0.5, 

0.5 <. a ~ l 

(see [5] ) one obtains the follm'ling convergence rate esti

mate for the difference scheme (2) 

llzll~~~,h ~ C hs-
2

11 ulls,Q 2 < s ~ 4 

Similarly from the lerama and from (7) one obtains: 

m 

(8) llzo+2
1

llh + 'LLII<P~cllh::; C hs-lll uiJs,Q 
j=l 

(9) 

where 

l " -· 
w(x,t) = J u(x' ,t) dx' - J J u(x' ,t) dx' dx", 

0 0 0 

From (4-) ,(8) and (9) expressing w by u, one obtains the 

following· convergence rate estimate for difference schene 



!lzll~~~,h ~ C hs-l Cllulls,Q +llfltp(s),s-1,Q) 

1 < s ~ 3, where p ( s) = ma,'C { 0, s - 2 } and II f II P, q, Q 

the norm of the anisotropic Sobolev-S1obodetsky space 

Vl~'q(Q) = L
2

(0,T; W~(O,l)) (\ W~(O,T; L2 (0,l)) (see [4]). 
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APPROXIMATION AND m;GULARIZATION OB' CONTROL 
PROBLE!VI GOVE:CmED BY PARABOJ;IC EQU.'\ TIOJ~r 

Lav D. Ivanovi6 , Bosko S. Jovanovic 

1\.BSTRACT: 

1\. finite dimensional approximation of distributed control 
Jroblem governed by the heat transfer equation is conside
"ed. We prove tha.t a sequence of finite dimensional problem 
3olution converge to the original solution. Also, we con -
3trv,ct a minimizing sequence which converge to the optimal 
~ontrol. 

'\.PROKSH'U\.CIJA I REGULARIZACIJ A PROBLEMA OP'l'IMALNOG UPH.,WLJA
c!JA ''3IS'l'E!VIIrlfA PAR.il.BOLICKOG TIPA. U ovom radu ::-azmr·1trn se lco
na~no dimanziona aproksimacija zadatka outimalnoe urravlja -
nja sistemom opisanim jedna~inom provodjenja tonlote. Doka
zuje se d2 niz .kona6no dim~nzionih resenja konvcrpira lcr ori
ginalnom resenju i vrsl se regulRrizacija tj. konstruise se 
n:inimiziraju6i niz koji lconvere;ira ka O'JtimalnO!ii upr::•vljanju. 

We r:hall consider the follO''Jin,P: nnic'.m~·J. control nro-

blem: 

(1) ,T ( V) = ~ f ( U (X , t ) , U (X , t ) ) dxd t _____,... inf 
"T X U 

( 2) ut= 6u + v
0 

(x,t) E QT=(O,l)
2x (O,T] 

(3) u(x,t)=O (x,t)E. _s~ X(O,~ -· ') 
s~ =Co ,1) ~ 

( 4) u(x,O)= v
1

(x) 

It is well known[5] that if v
0

E. H2r,r(QT) 

2r+l(i') . ( ) ( ) (A) v
1 

E. H .::tc than exlsts a unique solution of 2 , 3 , .... 

u E.. E2 (r+l) ,r+l(c;,T) for r ~ 0 and the following estima.te 
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valid: 

We shell denote 

)<'H2
r+l(Q): llv 1\x::::::; R 

( ) TJ-[ ex _-r2r,r((', )1'-/ v= v 
0 

, v 
1 

and , - v = r- h <; T / 

• Throughout the note we sh.c1.ll as-

sume that f is arconvex function and 

( 6) lf(a ,a
1

,a
2
)-f(b ~b1 ,-b 2 )\~g(a ,b) ±ja.-b.l 

0 0 -..c::: 0 0 1=0 l l 

vrhere g:( a , b ) is a T)Osi ti ve bounded function over bounded 
•' 0 0 

sets. 

Lemma. The solution of (l)-(4) exists. 

Proof. it is easy to show that J(u) is lower weakly 

semicontinuous function over U and U is a weaklv compc·ct 

set in xr. By [7 Il• 4 7] followG the lemma. 

To soJ_ve the problem (l)-(4) we c-.hall construct a 

sequence of finite dimensionEJ.l D:roblems of nonlinear l)roo;r2r:1-

ming [ 3 J , [ 7 J 
Let 2 h be a cmiform grid with the ste!l h=l/n oven· 

Q and let Wz be 8 u:ciform grid over ( 0, 'r] vti th the 

step rc; =T/m. In this note we shall as~:ume that constent _, 
2/ 2 

c
1

, c
2 
~ 0 exists such that c

1 
h ~ '?::'::::;;; c

2
h • 

In the set of discrete functions over 0_ - '2 X') "'117:: - ~~ h u 'L: 
we sh2.ll introduce the follovvinc; norms: 

')tc; II Oo:._,..; 
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hnrc: y'i= y/t=jrc• }u ur;wJ the stcmc1arr1 not:c.tion [6] • 

Let T be a :3teklov mollifi or [ 4 J , [ 6 J • By ~1 'm2 

we shall denote the 11rocluct of rrfll1 over x
1 

and ~2 over x
2 

• 

.JUl,m2,m3 h 11 t .Jil By '1' we s a deno e the product of 'l' 1 over xl , 

?2 over x
2 

and ?3 over t [4] . 
The problem (2)-(4) wiD be approximated bY.: the clif-

ference scheme of alternating directions GJ , [6] 

(7) 

(8) 

( 9) 

L ...... ( j+l j+o.5)/ 
5

rr- j+o.5 j+l 
2
Y- Y +y o. 0 -y _ -y _ = 

xlxl x2x2 

0 
y = v 

1 

where yj+o • 5 denot\'lS the value of y on the auxili."'.ry time sli-

t-(. 5 )"t: vj+o.5_(T2,2,1 )j+o.5 1 v _ T2,2 ce - J+o. , 
0 

- v
0 

anc. 
1

- v
1

• 

Useing ( 5) and the discrete solution estimEetes [4} 

fro1:1 Dupont-Scott theorem [ 2] follows 

(lo) liz112,l,h~Ch2rllvllx o<r~l 
r 

(l 2 ) llzllo,o,h~Ch2 
lfvllx 

0 

The cost function J(u) will be a!lproxima.ted b:r the 

following equation : 

Now we can formulate the sequence of finite dimensi-

on'31 nroblems 



(13) I ~ inf 
n wp,q,s 

n 

(14) Lly= wo L y= 
0 , w y = wl 2 0 

where the operators L
1

,L
2 

are defined b~ (7),(8) and the 

set wp,q,s= [w=(w w ) r- y =Hp'qx Hs : llw II <:... R} n o' 1 <::::::.. n n n Y ~ 
n 

We denoted by Hp,q Hs the discrete analogues of the Sobolev 
· n ' n 

spaces Hp'q(QT) ,Hs(52.) p,q,s 6 NU{o] . 
Since (13),(14) is the mathematical programming pro-~ 

blem one can prove that a solution y * of (13), (14) exists. 
n 

Furthermore we shall construct operators 

and P : Y ~X by 
n n r 

Q :X~Y 
n r n 

where w
0 

E. H2 '
1 

( QT) and w1 E. n3 (Q) 

lants defined in [l] • 

are the interpo-

Theorem 1. If the above assumptions are V9lid than 

(17) 

lim I* = 
n 

n ~oo 
J* = inf J<u) and for o <r,;; o.5 

u 

/I~ 
n 

Proof. Useing the technique developed in [ 7] from 

(11),(15),(16) one can Prove that the conditions of theorem 

3. [7 p.3ll] are satisfied so the theorem 1. follows. 

Now, we shall introduce Tichonov functjonnl [7] EJS! 

T ( w) = I ( w) + cJ. llvr II Y2~ • 
n n n n 



Let w * n 
hat 

*· T =J.nf n w n 

Sequences 

be a sequence of discrete controls such 

T (w) ~ T (w*) ~ T*' + rn· n n n n 

ol.n andrn are positive and lim J. = 
n~OQ n 

= lim M. = o. n--"'OC .; -n 
Theorem 2. If the theorem l. is valid and if 

(18) lim (h2r+l+ ){ )/o( =0 for O<r-:::;0.5 
n-~oo n .; ·n n 

than 

lim J ( P ( w ~ )) = J* 
n- n n 

where J(v~) = J* • 

Proof. Useing the same technique as in \)] from the 

estimate (ll) follows the theorem. 

Remark. If the cost functional is of the form 

J{u) = J f(u,u ,u ,ut)dxdt 
Q X XX 

T 

than in (17),(18) 2r+l must be replaced by 2r. If the cost 

functional is 

J(u) = S f(u)dx dt 
QT 

ana if r=o than in (17), (18) 2r+l must b8 replaced bd~ 2 • 
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SOLUTIONS Or THE GRID LAPLACE EQUATION DEfiNED IN CORNERS 

Desanka P. Radunovic 

ABSTRACT: 

Solutions of difference schemes, defined on the rectangular grid for 
Dirichlet and mixed boundary problems for the Laplace ,equation in corners 
3ft/2 and 2ft are obtained. From thejr asymptotic expansions it can be seen 
that the orders of errors are O(h21" I I z /11 " ) , v=3/2, 2, 3, 4, and that in so
ne cases the accuracy can be improved by the appropriate choise of the 
srid parameters. 

RESENJA MREZNE JEDNACINE LAPLACEA DEFINISANE U UGLOVIMA. Odredjuju se 
~esenja diferencijskih shema, definisanih na pravougaonoj mrezi, kojima 
se aproksimiraju Dirichletov i mesoviti granicni zadatak za jednacinu 
japlacea u uglovima 3ft/2 i 2ft. Iz asimptotskih razvoja dobijenih resenja 
sledi da je red greske aproksimacije O(hVV 1/z/11" ),v=3/2,2,3,4, ida se 
u izvesnim slucajevirna odgovarajucim izborom parametara rnreze moze pove-
6ati tacnost aproksirnacije. 

In this paper, in a context of studies of an accuracy of classic 

difference approximations of nonsmooth solutions of boundary problems for 

differential equations, we obtain solutions and their asymptotic expan

sions of difference problems that approximate on the rectangular grid 

n = { (x,y) I x=mh, y=nh', m,n E Z, h'=eh, h,e>O} 

following problems: to find the oontinuous function v ,not identically 

equal to zero, harmonic in the corner 0< <p<vft, 0< r <"' ((r,<p) polar coor

dinates),v=3/2,2,3,4, equal to zero on the positive part of the x-axis 

and on the line vft, and which does not grow too rapidly at the infinity, 

i.e. 

lim 
r-.ro 

v --= 0 .. 

Solutions of these problems, for corresponding v, are (from [2]) 

v = C Im z 1 /v = C r 1/v sin~ , 
\) 

C - const z -- r e£<p - ' 

so, their first derivatives have integrable singularities at the origin. 

For v =3 the initial problem can be replaced by the equivalent one, 
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defined in the corner 0 ~ <p d II I 2, o,. r<wvJith the boundary condition 

~ = 0 on the line <p = 3 11 I 2. Similarly, for v = 4 the initial problem can ax 
be replaced by the equivalent one defined in the plane with a crack, 

where the crack is on the positive part of the x-axis and at the lower 

edge of the crack the boundary condition ~ ~ = 0 is given. 

Let us define the one parameter difference operator family in order 

to approximate the Laplace operator (see [3]) 

"l +82 

A u = u _ + u _ - CY. h2 
- 2- u x-xy-y , CY. - XX yy CY. > -112' 

and difference operator families in order to approximate the boundary 

conditions of the second type 

on the line 3 11 I 2 , 
and 

(for CY. >-1 I 2 ACY. is the elliptic operator, [4] ) . Let us denote 

0 = { (x' y) (x,y)e:O, 0 <<p <vii, O<r<"' }, v 

r = {(x,y) (x,y)e: n, <p = vll, O<r<oo}, v 

fo= {(x,y) (x,y)e:n, x>O, y = +0}' ro = f 0 U{(O,O)} 
' 

r2 = {(x,y) (x,y) e: n, x>O; y = -0 }. 

Solutions of the following problems will be determined: 

PROBLEM 1. (v=312) 

u (-h,O) =A. 

PROBLEM 2. (v:2) , limulr = 0, 
f'-oo 

u=O, (x,y)e:r2 , u(-h,O) =A. 

PROBLEM3. (v=3) 

u=O, (x,y)e:f,, u(-h, 0) =A. 

PROBLEM 4. ( v: 4) 

>-. u = o, ( x, y) e: r. , u ( -h, o) = A. 

THEOREM 1. The solutions of the problems 1-4, for cor
responding v ,are 



A 211 eLI;[qn(f)e~ml;_1] F( etl;_z 

= {
""'2~11 F=(,..c.-:_z_1 '") l ( 1 _ e L 1; )' +t/V ( 1 _ z. e t 1; ) t -•/V 1 _ z,. e t I; ) d I;' 

n > 0, 

u(xm,ylnl) + 2cos~u(x_m,ylnl), n<O, 

1ere m = 0, ± 1 , ±2, ... , 

? ) F( z) = 2 F1 ( ~ - ~ , 1 - ~ ; ~ ; z ) 

3 a hypergeometric function, 

1d 

4) 
.J [cos2~ + ( 1 + e•) ( 1 +2a.) sin•~]- e sin~ 

.J[co&~ + (1+62
)( 1+2a.)siri'~ ]+ esin~ 

The proof is similar to the proof of the corresponding theorem for 

square grid given in [1 ]. First we define problems 1. and 3. for 

311/2 <<p<211 by appropriate transformations. Then, making use of the dis

crete Fourier transformation over the argument x, and solving the dif

ference equation for the argument y, we obtain the Fourier image of the 

solution. If we now apply the inverse Fourier transformation, we obtain 

the solution in the form 

(5) 

211 . I; 

l
JU.(E;)[qne~m -1Jdf;, m=0,±1,±2, ... , n=0,1,2, ... , 

u(x ,y )=~ 0 
m n 

211 
Jv0 (~;)[qlnlei.ml;_ 1]d!;, m=0,±1,±2, ... , n=-0,-1,-2, ... 
0 

(for n=+O and n=-0 we have different forms of the solution, as there is 

a crack on the positive part of the. x-axis). u0 and v0 are the Fourier 

ima5es of the traces of the solution on the lines y = +0 and y = -0, and 

q(~;) is the function given by (4). If we demand, for every defined prob

lem, that the function (5) satisfies boundary conditions, we obtain the 

problem of coupling analitic functions on the unit circle in the complex 

plane. This problem can be reduced to the singular integral equation 

1 1 
r ...!.i!l dt + cosl!. r~-.!ill.. dt = o, 
ot-x vo1-xt 

and its solution is 

- 1 ·• ( ) -11v ( 1 1 1 3 ) 'I' (X ) = C X 1 - X 2 F'1 -
2 

- - , 1 -- j -
2 

j X , 
. v v 

C:const. 
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Returning back to initial variables and using the given condition at the 

point (-h,O) to determine the constant C, we obtain the solution (1). 

THEOREM 2. The asymptotic expansions of the solutions of 

the problems 1-4, for corresponding v, are 

( 6) 

where F(z) and z1 are given by (2) and (3), and z = xm+ tyn=hiL 

For the proof of this theorem, we obtain more convenient 

expression of the solution (1) with substitutions s=e~C and 

z= ( s-z,)/(1-z1 s) 

( 7) u(x ,y )=- Av( 1+z,//v Im J (1-z)-1Nd[F(z)qn(z)~)m], 
m n !1(1-z1 )F(-z1 ) \z\= 1 1+z 1 z 

Imz>O 

where q(z)=q(s)=q(C) and F(z)=F[(eis_z1 )/( 1-z1 eLs)J. The proof is 

realised in tvJO steps. In the first step we prove that the essential 

contribution to the integral (7) is given by the integral in the close 

neighbourhood of the point z=1. The contour of integration is destorted 

and by estimating the integral for separate parts of the contour, we 

obtain 

( ) Av( 1+z )1
fv J ( )-11v ( ) -w(z) ~] (I 1-N) 

(8) u xm,yn =-li\i--z )F(-z,.)Im 1-z d[F z e .+ 0 ~ , 
1 c 

for any N>O. v.(z) = w(z) ~ is defined by the expresion 

e-v(z) = 

The curve Cis C:{z \Imv{z)=O} for zdz llz-1\<6, Imz>O}, i.e. 

Cis contained in the close neighbourhood of the point z=1. 

In the second step of the proof, the function in the integral is 

approximated by the partial sum of the asymptotic series written for 

z= 1, and obtained integral is calculated analitically. With regard to 

the features of the function w, its inverse function z=z(w) forlwl<61 

exists. So, in the integral (8) we can use the new argument of 



·~~o·~tion w. We suppose some series representaUons as functions of w 

>r (1-z)-t/v and F(z). and after some estimates we have 

,)) 

There the coefficients pk ( v) are determined by the series expansion of 

;he funcUon 

1 +vv 1 1 + ../z 1tv d z "' k 
P(w,v) = w 4(1-z)Jz (,--:-JZ) CiW = L pkw 

k:O 

le express ~,z by w and obtain 

If we put these obtained coefficients in ( 9), as z = h a , we have ( 6). 
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The difference problem 2. we can define on the displaced rectangular 

grid 

n ={(x,y) lx=(m+e:)h, y=nh', m,ne:Z, h'=eh, h,e>O}. 
E 

Its solution is given also by the expression (1) and its asymptotic 

expansion is determined by the following theorem: 

THEOREM 3. The asymptotic expansion of the solution of the prob

lem 2., defined on the grid ne:, is 

u( ) _ 2A I { II'> 1{ ../[( l+ e•)(1+2a)]) h 
xm,yn - ../[ii{1-z

1 
)h) m z - 2 _e:-

2
v2- -

( 10) 
1 . - h 2 h3 

-- ['I1Je:2-4e: ../n. 1+82
) ( 1+2et)] + ( 1 + 82)\ 1 +6 a) _2_! + e> -1]-} + 0( --), 

26 a zY2 jz I s/2 

where z=h(m+e:+Lne) =ha. 
E 

For the proof of the theorem we put v= 2 and replace a with ae: 

in the expreSSiOn (6), Where a:aE( 1-e:/aE). 



From the asymptotic expansion (6) we can conclude that the 

accuracy of the approximation is lower when the boundary corner is grea

ter (it depends on v), and that difference schemes of the higher order 

accuracy do not provide better approximations. With the choise of <Y., e 

and E such as E=../[( 1+ a•)( 1+2<Y.)]/4, the problem 2. can be approximated 

in such a way that the order of an error is 0( h2 ) for I zl = 0( 1 ) . For the 

scheme with <Y.=-1/6, the choise e::../2 and E::1/(2J2) provides the order 

of the accuracy 0( h3 ) • 
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CONNECTION BETWEEN O'm PROBLEM IN ELASTICITY 

THEORY AND THE !lfE'l'HOD OF API'ROXDIATE SOLVING 

OF CARLEJ-IANN 's BOUNDARY VALUE PROBLEr.f 

r.lil os S • Canak 

~BSTRACT: 

ln this paper we consider one problem in elasticity theory 

which appears to be Carlemann 1 s boundary value problem for 
analitic functions,For approximate solution of Carlemann's 

boundary value problem we take the exact solution of corres~ 
ponding approximate problem and,after that,tve estimate the 

error, 

VEZA IZHEDJU JEDNOG PIWBLEMA TEORIJE ELM'TICNOSTI I PRIBLI
ZNOG RESAVANJA GRA1HCNOG PROBLEMA CARLEMANN-A: Razmatra se 

jedan problem teorije elasticnosti koji se svodi na grani
cni problem Carlemann-a za an ali ticke funkcije, Za pribli

zno resenje problema Carlem~n-a uzima se tacno resenje o
dgovaraju6eg pribliznog probiema,a zatim se daje ocena gre

ske. 

In this paper we consider the following problem: 

Find such solution of biharmonic equation 

(1) y >" 0 

which satisfies the following conditions 

(2) u(x,O) = 0 

0> uytx,o)-O(x)uyy(x,o) ""'h(x) • -oo .(.X<. 
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and which is bounded when y-'?' oa ,if h(x) is a ~iven 

continuous function and 

-x 
ff (x) ""ae -x + b 

e + c 
I a, b, c - cons t. I 

In this case the function u(x,y) represents the 

displacement from the equilibrium position of elastic plate 

which covers a halfplro1e and which is fixed along the line 

y = 0 by elastic hinge with .a variable stiffness. 

If we apply on biharmonic equa.tion 

the Fourier transformation 

(5) 

we get the ordinary differential e~uation 

(6) 

with general solution 

But,if we looking for the particular solution which 

satisfies the condition U(x,O)~O and which is bounded 

when y ...._,. co , we have that 

(8) U(x,y) :=. yC(x)e-1x1y 

x>O 

x< 0 

If we substitute the value of C (x) in the condition 

(3) we get that 

e-xuy (x, O)+cuy (x, 0} -ae -xuyyLX, o) -buy-}c, o) := e -xh (x)+ch(x) 

or,if we introduce the notation 



n the condensed form 

\17hen '"e apply the Fourier transformation (5) on the 

equation (10) it transformes into 

(ll) cU lx,O}-bU (x,o)-cH(:x:)=- 4> (:x:+i) y yy 
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Since Uy(x,O):=.C(x) and Uy~x,0)=-21x!C(:x:),substituting 

these values into (11) we hawe 

(12) C(x}·(c+2blxl) = cH(x)-q, (x+i) 

Applicatio~ of Fourier transformation (5) on the re

lation (9) gives 

(l)) C (x)·(l + 2a IX I) :::: H (X)+ c:j:» (X) 

(14) 

Elimination of C(x) from (12) and (13) gives 

4> (:x:):- l+ 2a!XI 
C + 2b lXI 

(X+ i)+cH (x)' l + 2a lXI - H(:x:) 
c+2bl:x:r 

Helation (14) represents, so called, Carlemann 1 s boundary 

value problem for determining analitic function (z) , 

The most of the theory of Carlemann's boundary value 

problem is developed by soviet authors and analitic solving 

methods are given in details in [1] • 

Nevertheless,in many cases it is more convenient to 

apply approximate solving rnethods.In monography [2] pp 156-
158, the following theorem, which enab.les approximate solu

tion of problem (l4),is formulated and proved. 

'l'l1eorem T: Given the Carlemann' s boundary value prob-

lem 

and corresponding approximate problem 

(16) 



6 

Suppose that for coefficient by cp (x+ i) the following 

conditions are fulfiled 

(17) 
{ 

1 + D{x)~O • D(x) -continuous , 

Ind [1+ D(x)] = 0 

and that it may be factorized in the following lvay 

_. jCx) 
(18) l+D(x) =(x-1-i) 

where function N(z) is continuou~jj,bounded and analit1.c in the 

belt 04. Im z <.1 and nonzero in that domain. 

Let us introduce the notation 

Jl1:::. max{ max I N(x)l ,max I N(x+ 01} 
X X 

Let,further,in Carlemannls boundary value problem (15) 

function D(x) be bounded and such that 

Then for any right-hand side G(x) from 

problem {15) has the unique solution in belt 

That solution is determined by fonnula 

L2(- «~,eo) I 

0 < Im z <. 1. 

where ~ "'" ~ (x) is the solution of approximate Carlemann r s 

problem (16).The difference between solutions is estimated by 

the inequality 

(21) 

where the inverse operator K-l is determined by formula 

(22) 
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~et us now apply the mentioned theorem on the approxi-

tte solving of Carlemann's problem (14) .Instead of the whole 

1per halfplane we' 11 obtain only the belt 0-<. Im z-<. 1 and 

.• wose,for sake of easier computation, that a r:: 1/2 • b = 1/2 

end c -::::: 2. Then Carl emann 1 s boundary value problem (14) appears 

·O be 

q,(X)+ 1+ lXI cP(X+i) Q 2H(x,.l+\x(_ H(x) 
2 + I X/ 2 1- I X I 

here function .:P { -:t) has to be anali tic in the belt 0 4 Im z -41 

nd for every yE[O,l] satisfies the inequality -
24) Js c:P (x+iy)l

2 
dx ~ c 

The free term G(x) =.2H(x) 2:::tJ!! H(x) 
2+Jxl 

2 (- oo. oo) .Let us choose in our case that 

is given in 

""" x
2+ 25 

1 + D (x) =. x2+ 36, • 

/CoP.fficient 1 + D{x) of the approximate problem is choosen 

in the form of rational function in order to avoid complicated 

computations with Fourier integral.Nore than that,this function 

is even,equal to one in infinity and easy to factorize since 

it is in form of 

For the equation (23) the corresponding approximate e·ua

tion will be 

(25) 

In order that the equation (25) has the unique solution 

it is sufficient /see [2], § 15/ that the following conditions 

ore fulfiled 

(26) l+D(x)+o 

'DC± .oo):::: o 
Dlx) - continuous 

Ind [ 1+ D(x)]::: 0 



It is easy to check that all of these conditions hold. 

Coefficient by ~ (x+ i) can be factorized in the following 

way 

(27) 1+ Dtx) 

~ 

where the function N (z) is continuous,bounded and analitic 

in the belt 0.(.Im z-<.1 and nonzero iE that domain.ThPn +he 

boundary condition (25) by·the substitution 

(28) ~ (x) = N(x)· "o/ { x) 

where 'f' (x) is new continuous function 9 is transformed into 

(29) 'V{x)+'t'(x+i)=2 H(x} 
N(x+ i) 

'"h"'" we apply the inverse Fourier transformation the 

equation (29) transformes into 
'K 

(30) 'i' {x)+e -x. '¥ ( x)"" h (x) -ll 5 [ 2e-6 (x-s~e -5 (x-s) h(s) ds 
~GO 

Equation (30) gives us the function li' (x) .For determi

ning of function ~ {x) we use relation 

01) 

WlH"n we apply the inverse Fourier transformation on (31) we 

get 
~ 

(32) ~ (x) = 't' (x) -ll S e 6 (x-s) 'f (s)ds 

.)( 

From formulae (30) and (32) function te (x) may l1e deter

mined by h(x).Now the approximate solution ~(x,y) of problen 

(1)-(2)-(3) reduces to the following simplier problem 

(33) 

(34) 

2-Au:::.O 

u(x,O): 0 



35) - ) 1.... -u (x,o - 2 u (x,o) = h(x)+-'e {x) y yY 

u(x, oo) - bounded. 

Problem (33)-(34)-(35) can be easily solved if we apply the 
operational calculus/see for example [3] /.Aonlving Fourier 
transformation we easily find out that 

U(x,y)=yC(x) lxlv 

--c {x) (1 +-lxl} = H (x) T c:? (x) 
....... i'Thich p;ives 

U(x,y} ""ye-IXIY, H(x)+ cp ( x} 
l<t-lxl 

:1nd 
(36-') 

We also have that 

and 

(37) mp:l D(~)-D(x)I ~ 0,23 
N (x) 

H (x) +- ~ ( x) } 
l+lxl 

6 
= 5 

t19 

In that way we see that all conditions of the theorem T 
are fulfiled and that exact solution of the approximate Carle
mann's problem (25) can be taken as the approximate solution 

of the basic Carlemann 1 s problem (23) • 
At the end,using the Parcevalle equality and ine~ualities 

(21) and (37) we can make the following estimation 

(38) II 'e(x) - ~ (x) II L = II ~ ( x)- <fl ( x) II L ~ 
2 2 

where the operator K:-l is determined by formula (22} .ll'e have 

further that 



Let us estimate the last integral. 

-
- 2 ~::~~ H(x)+H(x)] }

2
dx = Jnr-1

(x) a~~~~: -
2 

t- 2 ( X + 25 

--
x 2+ 36 

=(0,23) 2[1 e-t :e (t)+ 2h(t}l 2dt 
~g)!) 

Using (38), (39) and (4o) we get inequality 

(41) \1 'e (x)- ~ {x) II L ~ 0 9 38 II e-x 'e (x) + 2h(x) II 
2 L2 

..... 
In order to make functions ~ and ~ even closer to 

each other,instead of approximate problem (25) we can take tt 

approximate problem in the following form 

(42) K'~ := 

'VI

= 2H(x) n 
11<."1 

2 2 
X 4-- Eht - H(x) 

with conveniently choosen values for n and ak • 
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BSTRACT 

SOLUTION OF POTENTIAL PROBLEMS WITH INTERNAL 
SOURCES BY BOUNDARY ELEMENT METHOD 

Josip, E. Pecaric, Miodrag M. Radojkovic 

he paper presents an alternative proof of the boundary integral formula
ion for two-dimensional potential problem with internal sources. This 
roof appeared to be much simpler than one derived by same authors in [4] 
nd thus is easier to extend to more complex cases (i.e. three-dimensio-

.. al problems). Accuracy of the method is illustrated by an example. 

RESENJE POTENCIJALNOG PROBLEMA SA UNUTRASNJIM IZVORIMA PRIMENOM METODE 
GRANICNIH ELEMENATA· U radu je prikazan alternativni dokaz integralne 
granicne formulacije za ravanski potencijalni problem sa unutrasnjim iz
vorima. Ovaj dokaz je jednostavniji od dokaza koji su isti autori izveli 
u [4J i stoga ga je lakse prosiriti na slozenije slucajeve (na primer, 
prostorni problem). Tacnost metode je ilustrovana jednim primerom. 

1. INTRODUCTION 

Finite difference and finite element techniques were almost exclu
sively used to solve numericaly the.equations governing the potential 
problems. Recently it was shown that boundary element method (BEM) can 
be also applied successfully [1J. 

In order to satisfy requirements that usualy arise in practice of 
solving potential problems, BEM solution procedure must incorporate the 
solutions of the following problems: 

-modelling of sources with finite radii [~ 
- modelling of coupled subregions with constant material properti-

es [3] . 
In this paper given is a new simpler proof for the result from [~ 

concerning modelling of internal sources. 
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2. BASIC THEORY 

In [4] the method was developed so that potential in a source can be 
computed for given flux and vice versa {note that only the first possibi
l-ity exists in [2]). A potential problem for two-dimensional domain Q from 
Fig. 1-a was considered, where r, S1 ,S2, ... ,Sn are its boundaries 1Sl,S2, 
... ,Sn are circles with radii r01 , r02 , ... ,r0n repre5enting -the system 

of interna~ sources). 

{a) 

Fig. 1. 

Equation that governs the problem reads: 
n 
\' , +-+ 

( 1) 17(K17U) = - t, Qk o(X-Xk) 
K=1 

{b) 

where u is the potential, n is the number of sources, Q~ is the volume 
rate of flux (positive for a source, negative for a sink) for the k-th 
source, xk is the coordinate of the k-th source and o is Dirac delta fun
ction. For a homogeneous medium {K=Const) (1) becomes: 

n 
{2) 112u = - I Qk .s(x-xk) 

K=1 

where Qk = Q~/K {K = 1,2, ... ,n). 
The boundary conditions are: 

u = u au -
on rl' q =an= q on r2 

Since {2) is Poisson's equation one can start from its well known 
boundary integral form (see for example [1, pp 45-47]) 

(3) ciui + f bu*d~t + f uq*dr = f qu*dr 
r~ r r 

where u* is the fundamental solution of the Laplace equation (solution 
for concentrated potential acting at point "i"): 

(4) u* = _lln l 
211 r 
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where r is the distance from the point "i" to any point, ci is a con
stant from [0,1] (C

1 = 1 for an internal point, ci= 0 for an external po
int and C

1 = 0,5 for a point on the smooth boundary) and b is known fun
ction from Poisson equation. In the case considered: 

{5) 

Than (3) becomes: 
n i 

(6) c u1 - 1 u~* Q. + ruq*dr = Jqu*dr 
J J j=1 r r 

i.e. 
n N N 

(7) c1u. - I U·~*Qj + I r uq*dr = L f qu*dr 
~ 

j=l J K=l f]c K=l rk 

where N is the number of segments used to devide the boundary (boundary 
elements). 

In the case when a 11 Q_js are known one has the case from · [2 ,p. 49] 

where the method of superposition was used to solve the problem. 
But the case from [4] where all Qj are not known can be also obta

ined using (7). If the potential uN+i on s1 is known (see Fig.1-a) one 
can assume its value on the distance r01 from source and put point "i" 
on this distance from the source (see Fig.1-b). Now, this is a point in
side the domain and c1 = 1 so that (7) becomes: 

(8) 

{9) 

n 
i* u -"' u.Q. N+i ,L, J J ]=1 

For j=i one has: 
i* 1 1 u. == -ln-
~ 211 r 01 

N 

+ ~ r uq*d 
K=l rk 

N 

= 2: rqu*d 
K=l rk 

For j 'f i one can suppose rji » r01 + r0j(rij is the distance bet
ween sources i and j) and put: 

i* 1 1 u.:::::;- ln-
1 211 r .. ( 1 0) 

~] 

Equations (7) and (8), after selection of the boundary element type 
.(constant. linear, quadratic, etc. or mixed) [3] can be solved for all 
unknowns u•s and q's on the boundary rand all unknown u's and Q's for 
sources (sinks) by solving corresponding system of linear algebraic equa-
tions. 



Furthermore, using these values, one can compute the values of u's 

and q's at any internal point. 
Note that the same result was obtained in [4] but the proof given 

in this paper is much simpler. The similar procedure can be extended to 
threedimensional case without any difficulties (at least from the theore
tical point of x view). 

3. AN EXAMPLE 

The procedure outlined above was incorporated in the BEM computer 
program currently in use at Civil Engineering Faculty in Belgrade to 
solve two-dimensional potential problems. One example used for verifica-
tion of the method is given in Fig. 2. 

z 
r0 "' 0.5 

100 

50 
~ P1 

-x -100 -50 0 

Fig. 2. 

50 

_ Domain boundary 

P3 

P2 

100 

• Interna no 
o Boundary no 

l des 
des 

X 

The problem is to find the potential distribution in the half pla
ne with straight boundary (y=O) along which the constant potential u = 0 
is given. Three internal sources with radius r5 = 0,5 are located at po
ints P1 (-100,40), P2 (100,20), P3 (100,50) with potentials given. Nume
rically computed fluxes in each source are compared with analytically 
computed ones in table 1. 

Table 1. 

pl Pz Pg Method 
u (potential) 4.97 4.83 -4.94 
Q (flux) 6.025 5.990 4.785 Analytic solution 

1-::--:---·-· 
Q (flux) 

~----

6.000 5.975 4.780 Boundary elements 

Potentials inside the domain in different cross sections of the 
half plain are compared in Fig. 3. 
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It is seen that the numerical solution of the problem considered is 
very accurate although the boundary discretisation was rather rough. Note 
that solution of the same problem with finite element method would require 
very fine discretisation in the vicinity of sources to achieve the same 
accuracy. 
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A POSSIBILITY FOR CALCULATING PRESSURE GRADIENT FORCE 

IN SIGMA COORDINATE SYSTEM 

Dragutin T. Mihailovic 

BSTRACT: 

new saheme for the aalaulation of pressure gradient forae 
n the sigma aoordinate system is proposed. An approximation 
or the wa term in the thermodynamias equation is aonsidered 
oo. The proposed method and an earlier approaah {2} is aom
ared by time-integrations of the atmosphere at rest, 

EDNA MOGUCNOST ZA IZRACUNAVANJE SILE GRADIJENTA PRITISKA U 
IGMA KOORDINATNOM SISTEMU. Predlozena je nova 8ema za izra

uunavanje siZe gradijenta pritiska u sigma koordinatnom sis
temu. Razmatrena je jedna aproksimaaija za wa clan u jednaai
ni termodinamike. Predlozeni metod i jedna ranije predlozena 
aproksimaaija {2} pgrdjene su pomoau vremenskih integraaija 
za sZuaaj mirne atmosfere. 

1. INTRODUCTION 

The problem of calculating pressure gradient force in 

the sigma coordinate system is well known. It is related to 

the appearance of two terms in the expressions for the pres

sure gradient force. For example, with the original sigma coo

rdinate {8} over a sloping terrain the two terms in the exp

ressions of the pressure gradient for9e tend to be large in 

absolute value and have opposite signs. If, say, they are in

dividually ten times greater then their sum, a 1% error in 

temperature (2-3°C) will result in a 10% error in the pressu

re gradient force {9}. To overcome this problem, a number of 

difference analogues of the pressure gradient force in the 

sigma coordinate system have been developed {2},{1},{3}. A 

problem encountred by some of these analogues when geopoten

tial is initially specified rather than temperature has rece

ntly been discussed by Mesinger { 5} 'and compared by a numeri-
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cal example of the atmosphere at rest {6}, 

In this paper we shall concentrate our attention to the 

possibility of calculating the pressure gradient force in the 

sigma coordinate system by means of an interpolation proce

dure. In addition, we shall try to approximate in finite-dif

ference form, the wa term that provides consistent transfor

mation from potential to kinetic energy. Finally, the propo

sed schemes was compared with an earlier one {2}. 

2. METHOD OF CONSTRUCTION 

Notation 

ap specific heat at constant pressure 

k suffix indicating level of the model 

p pressure 

R gas constant 

a suffix indicating surface value 

t suffix indicating atmosphere top value 

T temperature 

V lateral vector wind 

u,v components of V 

a specific volume 

cr (p-pt)/(p
8
-pt) the vertical coordinate 

a dcr/dt 

11 

w 
Pa-Pt 
dp/dt 

~ geopotential 

V f:f lateral del operator in "sigma" surfaces 

Vp lateral del operator in "pressure" surface 

In the sigma coordinate system, the differential form 

of the pressure gradient force has the form 

( 1) - V ~ = - V ~ - RTV11 p CJ 

Starting from this expression, Kurihara {4} proposed a 

technique for calculating the pressure gradient force in the 

sigma coordinate system. Namely, it is possible to minimize 

the error in the calculation of pressure gradient force by 

interpolating geopotential from the nearest sigma surfaces to 



constant pressure surface. This idea was applied to vertical~ 

ly non-staggered grid with velocity components, temperature 

and geopotential defined in the middle of the layers. 

Kurihara's idea can also be applied in the case of the 

staggered grid in the vertical, with geopotential located at 

the interfaces of the layers. This decision seems more reaso

nable since the latter grid is a better choice then the for

mer one {10}. In our case we used quadratic interpolation in 

accordance with the hydrostatic equation in the form 

(2) RT 
p 

Let us add that in the case of a more realistic atmo

sphere anversion) we can apply the spline method of interpo

lation using all levels of the atmosphere model. 

For a number of pressure gradient force schemes an as

sociated procedure for calculation the wa term of the thermo

dynamic equation, 

(3) ~at (11a T) + 'i/ (11Va T) + ~(11c'w T) 
o p rJ p orJ p 

11wa 

ensuring consistency of the transformation between kinetic 

and potential energy, has been developed. Experiance has 

shown that it is desirable to preserve the consistency even 

in numerical models designed for short-range simulations. 

Otherwise, numerical instability may be encountred in less 

than a day of simulation time, in the presence of steep topo

graphy especially. 

The contribution to the generation of kinetic energy 

by the pressure gradient force can be written in the form 

(4) 11wa 

It was stated already ·that the exact cancelation, in the fi

nite-difference form should be provided between the wa terms 

in (3) and (4). 
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Taking into account the continuity equation, hydrosta

tic equation, and w, we arrive at 

(5) 11Wct - ~(11~0) - ~(~cr)~ - ~v •11V + RTp~V•V 11 a cr 'f a a 'f at 'f cr ap cr 

Comparing the right sides of the expressions (4) and 

(5), that must be equal and in the finite-difference form, we 

find that the divergence of the surface pressure should be 

calculated via the expression 

(6) 

In this way we cancel the wa terms in (3) and (4) in the ex

pression for total energy. 

Using the thermodynamics equation (3), hydrostatic eq

uation (2) and definitio of w, we can write 

(7) wa 

In the finite-difference form, the last expression, 

for the case of horizontally staggered variables, in the x 

direction, has the form 

(8} 

where 

(9) 

and o and o are operators of divergence in the finite-x,p x,cr 
difference form in x direction for p=const. and cr=const. The 

subscript 0 denotes the point where the contribution of the 

wa term is calculated; 11* denotes the value of 11 in the point 

in which velocity components are not defined. 



3. A NUMERICAL EXAMPLE 

We copmared the proposed scheme with an earlier appro

tch {2} which includes a non-staggered distribution of vari

ables in the vertical. 

The experiment consisted of time-integrations with an 

atmosphere in a hydrostatic equilibrium; motions generated 

are thus a consequence of the pressure gradient force error 

(Blumber, personal comunication). The integrations were per

formed in a two dimensional domain (x,a) with constant boun

dary conditions specified at the western boundary (x=O). At 

the eastern boundary (x=l2000 km) the radiation boundary con

dition was used {7}. Atriangular mountain with 500 km width 

and the maximum height of 2 km was defined in the midlle of 

the domain. The atmosphere was devided into nine layers in 

the vertical. The initial surface pressure was 1000 mb away 

from the mountain. The top of the model atmosphere was at 

200 mb. A strong inversion up to 900 mb was located on the 

left of the mountain; the temperature was 0°C at 900 mb and 

-10°C at 1000 mb. Otherwise a temperature profile linear in 

Znp was assumed, the temperature taking on the value 3.5°C 

at 1000 mb and o0 c at 900 mb. The exact initial geopotential 

was calculated integrating the given temperature profiles. 

The grid size was 250 km, time step 10 min, and Coriolis par

ameter 0.0001 s-l 

days 0 1 2 3 4 5 6 7 8 9 10 11 

c 18.49 6.08 5.61 5.49 5.55 5.42 5.42 5.40 5.47 5.48 5.53 5.51 

I 0.39 0.39 0.41 0.42 0.43 0.44 0.46 0.47 0.48 0.50 0.51 0.53 

daysO 1 2 3 4 5 6 7 8 9 10 ll 

c 8.92 5.40 5.12 4.84 4.68 4.60 4.41 4.32 4.20 4.10 3.99 3.93 

I 0.32 0.32 0.33 0.34 0.35 0.36 0.38 0.39 0.40 0.42 0.43 0.44 

Table 1. RMS pressure gradient force error, in terms of geostrophic wind, 

for different schemes, and for the wind point nearest the moun-

tain at its "inversion" side (above) and its "no inversion" si-

de (below). 
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(because of the system symmetry V::::V(r ); V:fcV(z) and ;1V/i'Jz:o0) 

and blllll!d~ou>;~r condition V:=O fo:t." :t'""F!, BJ1d may l1e o'btained r)y con~ 

ventional application of the image theorem" 
Following this theo

rem the electro

static sys·i;em (the orJ.ginal 

q ::cw'J :LtG image 

::d; the cUrectio: 

J) oa:n l><::l u.seda 

So the eleot:r:.ic scalar 

(3) G "' ln 

is so c~alled Green~ s 

tes, E. irJ the electric 

dx·ical coo:l;di 

3. A NEW INTJ.!aU'HE1'ATIOH 01<1 Tli8 

'rhe equation ( 1 ) can be also solved 

of integral transform method [2]: 
.roll 

Consider Laplace's equation l 
1.' 

r ?f:i) + or 

Di 

var:Lani 

0 

and assume the potential solut:tun :Lu the 

V = R(r) F(~) ~ where 

va:ri.able fo1 

(4) 

and k is the separable consta,nt to be detex:'minedo 'rhe solutions 
dife:cential equations (4) are ek~ and e~l{€1> and cl(r 

and sl(:c):c.:sin(ldn~), rco::!pe(;t Fed; 

and dete:cmining k
0 

so tbe fnnctJona ol ( and 

sln(:l•):c:sin(nlc0ln~) satisfJ.ed condHion~ 
b Jo, for nlm 

(5) J cln(r)clm(r)rdr = l and 
a Tl 

~2k ( 1 +d ) ~ for n==m 
•
0 

no 

b f0 9 for n~m and n=O or m=O 

( 6 ) J sl ( r) sl ( r) dr_ "' ~ 
a n m r 1

1 

Ji: 
for 0 l2~~ 9 

where b > a, we have k
0 
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~xpending Dirac's {~function f(r-d) in the series 

(7) r f ( r-d) "' f 2 sln ( r) sln ( d) 
n= 1 - ln ( b/ a r , for a ( d < b , 

we have in the case when b-..<'., 

(8) rJ(r-d) = t S sin(pln£)sin(pln~)dp 
c 

0 
a a 

Because of the obtained Dirac's J -function integral transform~;ttion 
the solution of Poisson's equation (1) can be written as 

, 
00 sin(plni)sin(pln~) 

(9) V = rr l p sh(pJr) ch[e-,UYL)p]dp 

wher 11 + 11 is for O~e~ J.. and "-" is for J...{; e ~ 2J( • 

3. APPLICATION OF PRESENT RESULTS, EXEMPLES AND CONCLUSION 

The physical solution of the consider problem is indepen
dent to the mathematical approach. So the solutions (2) and (9) 

are equal and we have the following expression: V(from formula 2), 
V(from formula 9). Using series 

( lO) ch(e-JtJL)p = fl p[e-o{±ll-(2m+1 )1Z] + -p[_e-oL±Ji+(2m+1 )JZ] 
sh(px) ~ e e 

oo m-o 2 2 
and integral J 1 -c~spA e-pBdp = ~ln~ , forB> o, we have froJ 

o B 
last. expression 

= ln2(L2d)+ [e-Jtit-(2m+1 )il] 2 

(11) jl a _ d
2

r 2+a4-2a
2
rd cos(e-d) 

m"'-oo ln2 (~) + [e-J.±JI-( 2m+1 )JL] 2 - a 2 [r2+d2-2rd cos( e-~U 
v·here a~r<=, at;,d and with"+" for O~et;,d.. and 11

-
11 for J.~e~2'i[. 

Puting in (11) 'r=e-J , R=r/a ~ 1, IJ::::d/a ~ ·1 or RD=eA, A?. O, and 

R/D=eB, B is optional, we have: 

( 12 ) P= fl ln
2

(RD)+(Y-'-2mRi 
m=-oo ln2(R/D)+('f'-2m.il) 2 

( 13) 

Separately, we have: 

R2D2+1-2RDcos't' 
"' R2+D2-2RDcos 'f' 

Q<l 
A 2+~m2Jt2 _ 

B shfA~2~ ( 14) P(= n , for '1'=0, 
m=l B2+4m2Jl2 - A sh B 2 

( 15) P2= n C2tm 2 _ shgW) , for 'f=O, A=2JlC and 
m=1 ~- Jl 

m 

"" 

and 

B:;::O and 

c2 +(2m-1~ 2 2 (16) P3= n , for 'f='Sl/2, A=JrC/2 and 
D2+( 2m.,:.1 )2 

= 
B=KD/2 • m=1 



The obtained formulas are very useful, because of the sloVlJ 
convergence of present infinite products. The convergence of pro
ducts shown folloving numerical results (Approximate values are 
calculated by multipling 65 membres of infinite products. The exac 
values are in brackets.): 
For R=2, Il=2 and If=- 51:' P = 1.55783 (exact P"" 1.5625). 
For R=2, Il=4 and lf=-.1! P = 2.24039 (exact P = 2.2500). 
For R=2, D=2 and r=-JV6 P = 9.36901 (exact P = 9.93971143). 
For R=2, Il=2 and ~=-2JL/3 P ~ 1.74477 (exact P = 1.7500). 

In the following table the exact values of P2 for different 
c are shown. 

f 

--a ----r----- 1?~------ -------c---1- ----p-2 __ _ 
----o~---- ~-1.6oooooo66 - 2;---:- ----,f~2612923:E+OT-

o. 01 II 1. 000164501 5. : 2.112184 71!:+05 
0.1 1.016530706 10. 1 7.0078318£+11 
0.5 I 1.465052383 I 20. l 1.5428269E+25 

L'_·--~-6?~~~791 0 _l_~ ?~·- __ _I __ 5. 2682~?5~~~5 -
Combinig the results (16J for 0=1 with known formula 

00 

P; = n ( 1- ~ ) = ~ , we have 
m=2 m 

noo 1 shR 
P4 = (1--;r) = :pr- = 

m=2 m 
"' 0.9190194776. 
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VALUATION OF SEVERAL SINGULAR INTEGRALS USING ELECTROSTATIC 
FIELDS LOWS 

Dragutin M. Veli~kovi6 

BSTRACT: 

sing electrostatic fields lows a special approach to the seve
~1 singular integrals evaluating is presented. The obtained re
llts are useful in numerical solution of electrostatic problems 

u3 integral equations technique. 

ODREBIVANJE NEKIH SINGULARNIH INTEGRAL! POMOGU ZAKONITOSTI ELEK
TROSTATICKIH POLJA: Koriscenjem odredenih elektrostatickih zako
na izvraeno je izracunavanje ocredenog broja singularnih integra
la. Dobijeni rezultati su od koristi u toku pribli~nog·numeri~kog 
resavanja integralnih jedna~ina elektrostatike. 

1. INTRODUCTION 

In the applied electromagnetic field theory we have often 
necessary to compute several kin~of integrals having singular 
subintegral functions. Special in the case when field pointb are 
in the region of electromagnet'ic field sources. Because of the 
singularity of subintegral functions conventional numerical qua
drature formulas are not useful, except after the singularity ex
traction. The present paper shown an effective method for evalu
ating several kinds of singular integrals. In the present method 
sssence is the application of several electrostatic field lows, 
in the first place conformal maping and logarithmic potential the
ory. Except general theoretical description, two separate examples 
are shown. The obtained results are very useful for numerical so
lution of electrostatic integral equations systems. So we have the 
excelent numerical results in the theory of stripe lines. 



2. EVALUATION OF SINGULAR INTEGRALS 

We consider planparallel electrostatic field with knovn1 
but arbitrary cross section (Fig.1). 

v~ 
VV=f(Z.) 

X u 
- ... --

z-plane w-plane 
Fig.l F'ig. 2 

For electric scalar potential evaluation two general p! 
cedure exist: 

1? In the case when the surface charges densities on tl: 

electrode, ~(r~), are known, the potential, v, is: 

{

u, for r E: si' si is conductor interior 

(l) V(r) := u- 21c j1<r')d1 9ln(\r-r'l/lro-r'l), for rE se I 

8
8 

is conductor exterior, 
where c is the contour of conductor cross section,£ is electrJ 
permitivity, U is the conductor potential and q'== ~7(i:')d1' ' 

c 
the conductor total charge per unite length. 

2? The second way for potential evaluating is based on 
conformal maping. If we have the complex function w:::Rej't' = u+j, 
== f ( z=rej 8 =x+j y) , j = v:1 , which map the exterior of conducto: 
z-plane to the unite circular cylinder exterior in w-plane (Fj 
the complex potential is 

( 2 ) <j) = f U , :f~r R ~ 1 

Lu- 2~£ lnw = V+jlf, :for R~1. 
During conformal maping the electrode potential and total linE 
charge densities are constant. 

The real part of ¢ is potential, 
( 3 ) V = Re { ¢>} = U - 2-ii: lnR • 
The electric field on the conductor surface is E=\d~/dzl = 
= q' \w~ \I2.JLE , where I w~ I= \dw/ dz I for R=1. U!'Jing boundary cone 
tion )? =E:E we have 
(4) 1 := % I Wb I 
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uting (4) in (1) the potentlal iB 

~ lw' jrn 9 1n( lr-r 1
' 1/lr e o < ~" 

0) and (5) we have 

( 6) I/ { 
0 9 for I' E S "l 

' I ) "' 2JilnB. 9 :tor ii E- S 
0 

singular suld"Id;c f'PYJ :l"o:ns R:ncl. 

rn'nmla :tor EnraJua"t.:ing 

3 EXAMPMS 

C'onside~L' Unear conform~l 

2ft: 

(7) J ln 

Ji'o:t' 
2!1 

(8) J 
0 

Co:nside:r b:U coni:o:rmal m 

mro>.p End;erior 

o tho exterior of 

:lr'"l'COSE) 9 

Fox· d1ffc:cenl; va.lues of 

and eos20 = ( 

x and y we have~ 

J n o~g""""~"'~~2 ,~ { 0 for I :>:t: 10 e 

Jlln 

e 

and 

ln 

en 9 


